842
Views
84
CrossRef citations to date
0
Altmetric
Original Article

Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic

, , , , , , , , , & show all
Pages 1041-1049 | Received 19 Aug 2014, Accepted 11 Dec 2014, Published online: 17 Feb 2015

References

  • Adams NH, Kramer J. 1999. Potentiometric determination of silver thiolate formation constants using a Ag2S electrode. Aquat Geochem 5:1–11
  • Batley GE, McLaughlin MJ. 2010. Fate of manufactured nanomaterials in the Australian Environment. Barton, ACT, Australia: CSIRO Niche Manufacturing Flagship
  • Blamey FPC, Kopittke PM, Wehr JB, Kinraide TB, Menzies NW. 2010. Rhizotoxic effects of silver in cowpea seedlings. Environ Toxicol Chem 29:2072–8
  • Cedergreen N, Ritz C, Streibig JC. 2005. Improved empirical models describing hormesis. Environ Toxicol Chem 24:3166–72
  • Dietz K-J, Herth S. 2011. Plant nanotoxicology. Trends Plant Sci 16:582–9
  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ. 2013. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–90
  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, et al. 2013. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–37
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–22
  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H. 2011. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–8
  • Kim B, Park C-S, Murayama M, Hochella MF. 2010. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–14
  • Kinraide TB. 2009. Improved scales for metal ion softness and toxicity. Environ Toxicol Chem 28:525–33
  • Klein CL, Comero S, Stahlmecke B, Romazanov J, Kuhlbusch TAJ, Van Doren E, et al. 2011. NM-Series of Representative Manufactured Nanomaterials. NM-300 Silver Characterisation, Stability, Homogeneity. Luxembourg: European Commission, Joint Research Centre, Institute for Health and Consumer Protection
  • Koontz HV, Berle KL. 1980. Silver uptake, distribution, and effect on calcium, phosphorus, and sulfur uptake. Plant Physiol 65:336–9
  • Kopittke PM, Blamey FPC, Menzies NW. 2008. Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant Soil 303:217–27
  • Kopittke PM, Menzies NW, de Jonge MD, McKenna BA, Donner E, Webb RI, et al. 2011. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiol 156:663–73
  • Kopittke PM, Menzies NW, Wang P, McKenna BA, Wehr JB, Lombi E, et al. 2014. The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environ Toxicol Chem 33:268–77
  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, et al. 2014. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106
  • Levard C, Hotze EM, Lowry GV, Brown GE. 2012. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–14
  • Lin DH, Xing BS. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5
  • Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting ÅK, McClure S, et al. 2013. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–7
  • Lombi E, Susini J. 2009. Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 320:1–35
  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, et al. 2012. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46:7027–36
  • Lubick N. 2008. Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42:8617
  • Malinowski ER. 1991. Factor Analysis in Chemistry. New York, NY: John Wiley
  • Martirosyan A, Schneider Y-J. 2014. Engineered nanomaterials in food: Implications for food safety and consumer health. Int J Env Res Public Health 11:5720–50
  • Nowack B. 2010. Nanosilver revisited downstream. Science 330:1054–5
  • PENI. 2013. Project on Emerging Nanotechnologies Inventory. Woodrow Wilson International Center for Scholars. Available at: http://www.nanotechproject.org/inventories/consumer/analysis_draft/. Accessed on 28 October 2013
  • Ratte HT. 1999. Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108
  • Ravel B, Newville M. 2005. AThena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–41
  • Seal S, Karn B. 2014. Safety aspects of nanotechnology based activity. Saf Sci 63:217–25
  • Shaff J, Schultz B, Craft E, Clark R, Kochian L. 2010. GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant Soil 330:207–14
  • Slade SJ, Pegg GF. 1993. The effect of silver and other metal ions on the in vitro growth of root-rotting Phytophthora and other fungal species. Ann Appl Biol 122:233–51
  • Wang P, Menzies NW, Lombi E, McKenna BA, de Jonge MD, Paterson DJ, et al. 2013a. In situ speciation and distribution of toxic selenium in hydrated roots of cowpea. Plant Physiol 163:407–18
  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, et al. 2013b. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–9
  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, et al. 2013c. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–30
  • Webb SM. 2005. SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Phys Scripta T115:1011–14
  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, et al. 2011. More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–7
  • Zhang W, Yao Y, Sullivan N, Chen Y. 2011. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45:4422–8
  • Zhao CM, Wang WX. 2012. Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46:11345–51
  • Zhu H, Han J, Xiao JQ, Jin Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor 10:713–17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.