308
Views
29
CrossRef citations to date
0
Altmetric
Original Article

Computer-aided design of carbon nanotubes with the desired bioactivity and safety profiles

, , , , , , & show all
Pages 374-383 | Received 22 Aug 2014, Accepted 30 Jun 2015, Published online: 02 Nov 2015

References

  • Arts JHE, Muijser H, Jonker D, Van De Sandt JJM, Bos PMJ, Feron VJ. 2008. Inhalation toxicity studies: OECD guidelines in relation to REACH and scientific developments. Exp Toxicol Pathol 60:125–33
  • Austin CP. 2009. The Tox21 collaboration on predictive toxicology the best of times, the worst of times. Toxicology 112:385–93
  • Baalousha M, Lead JR. 2013. Nanoparticle dispersity in toxicology. Nat Nanotechnol 8:308–9
  • Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, et al. 2010. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5:683–9
  • Breiman L. 2001. Random forests. Mach Learn 45:5–32
  • Burello E, Worth A. 2011. Computational nanotoxicology: predicting toxicity of nanoparticles. Nat Nanotechnol 6:138–9
  • Carbó-Dorca R, Besalú E. 2011. Construction of coherent nano quantitative structure–properties relationships (nano-QSPR) models and catastrophe theory. SAR QSAR Environ Res 22:661–5
  • Chandana Epa V, Burden FR, Tassa C, Weissleder R, Shaw S. 2012. Modeling biological activities of nanoparticles. Nano Lett 12:5808–12
  • Chau YT, Yap CW. 2012. Quantitative nanostructure–activity relationship modelling of nanoparticles. RSC Adv 2:8489–96
  • Cristianini N, Shawe-Taylor J. 2000. An Introduction to Support Vector Machines, History. Cambridge, MA: Cambridge University Press
  • Demirdjian ZS. 2006. Nanotechnology: The New Frontier for Business and Industry. J Am Acad Bus Cambridge 8:I–II
  • Downs GM, Barnard JM. 2002. Clustering methods and their uses in computational chemistry. Rev Comput Chem 18:1–40
  • European Parliament EC. 2010. REACH regulation. [Online] Available at http://ec.europa.eu/enterprise/sectors/chemicals/reach/index_en.htm. Accessed on 7 January 2014
  • Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A. 2010a. Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol 23:171–83
  • Fourches D, Muratov E, Tropsha A. 2010b. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189–204
  • Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A. 2010c. Quantitative nanostructure–activity relationship modeling. ACS Nano 4:5703–12
  • Fourches D, Pu D, Tropsha A. 2011. Exploring quantitative nanostructure–activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Comb Chem High Throughput Screen 14:217–25
  • Gajewicz A, Schaeublin N, Rasulev B, Hussain S, Leszczynska D, Puzyn T, Leszczynski J. 2015. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Nanotoxicology 9:313–25
  • Ghorbanzadeh M, Fatemi MH, Karimpour M. 2012. Modeling the cellular uptake of magnetofluorescent nanoparticles in pancreatic cancer cells: a quantitative structure activity relationship study. Ind Eng Chem Res 51:10712–18
  • Hartung T. 2010. Evidence-based toxicology – the toolbox of validation for the 21st century? ALTEX Altern zu Tierexperimenten 27:253–63
  • Jastrzębska AM, Kurtycz P, Olszyna AR. 2012. Recent advances in graphene family materials toxicity investigations. J Nanopart Res 14:1320–8
  • Jones R. 2009. Nanotechnology, energy and markets. Nat Nanotechnol 4:doi:10.1038/nnano.2008.420
  • Kaiser J-P, Krug HF, Wick P. 2009. Nanomaterial cell interactions: how do carbon nanotubes affect cell physiology? Nanomedicine 4:57–63
  • Kar S, Gajewicz A, Puzyn T, Roy K. 2014. Nano-quantitative structure–activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicol In Vitro 28:600–6
  • Kumar A, Kumar P, Anandan A, Fernandes TF, Ayoko GA, Biskos G. 2014. Engineered nanomaterials: knowledge gaps in fate, exposure, toxicity, and future directions. J Nanomater 2014:1–16
  • Liu Y, Hayes DN, Nobel A, Marron JS. 2008. Statistical significance of clustering for high-dimension, low-sample size data. J Am Stat Assoc 103:1281–93
  • Luan F, Kleandrova VV, González-Díaz H, Ruso JM, Melo A, Speck-Planche A, Cordeiro MNDS. 2014. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale 6:10623–30
  • Luther W. 2004. Industrial application of nanomaterials – chances and risks, technology analysis. Dusseldorf: Future Technologies Division of VDI Technologiezentrum Germany. Available at http://www.innovationsbegleitung.de/11.pdf. Accessed on 7 January 2014
  • Mauri A, Consonni V, Pavan M, Todeschini R. 2006. Dragon software: an easy approach to molecular descriptor calculations. Match Commun Math Comput Chem 56:237–48
  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, et al. 2006. Safe handling of nanotechnology. Nature 444:267–9
  • Monteiro-Riviere NA, Samberg ME, Oldenburg SJ, Riviere JE. 2013. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations? Toxicol Lett 220:286–93
  • Monti S, Tamayo P, Mesirov J, Golub T. 2003. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52:91–118
  • Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B. 2014. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114:7740–81
  • Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, et al. 2008. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J Phys Chem B 112:3300–7
  • Murray AR, Kisin E, Inman A, Young S-H, Muhammed M, Burks T, et al. 2012. Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro. Cell Biochem Biophys 67:461–76
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–57
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–7
  • Puzyn T, Leszczynska D, Leszczynski J. 2009. Toward the development of “nano-QSARs”: advances and challenges. Small 5:2494–509
  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al. 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–8
  • Qu G, Bai Y, Zhang Y, Jia Q, Zhang W, Yan B. 2009. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon NY 48:2060–9
  • Rodgers AD, Zhu H, Fourches D, Rusyn I, Tropsha A. 2010. Modeling liver-related adverse effects of drugs using knearest neighbor quantitative structure–activity relationship method. Chem Res Toxicol 23:724–32
  • Savolainen K, Pylkkänen L, Norppa H, Falck G, Lindberg H, Tuomi T, et al. 2010. Nanotechnologies, engineered nanomaterials and occupational health and safety – a review. Saf Sci 48:957–63
  • Service RF. 2004. Nanotoxicology: nanotechnology grows up. Science 304:1732–4
  • Shao C-Y, Chen S-Z, Su B-H, Tseng YJ, Esposito EX, Hopfinger AJ. 2013. Dependence of QSAR models on the selection of trial descriptor sets: a demonstration using nanotoxicity endpoints of decorated nanotubes. J Chem Inf Model 53:142–58
  • Singh KP, Gupta S. 2014. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Adv 4:13215–30
  • Sips M. 2009. Nanotechnology in perspective risks to man and the environment. Public Health 1:1–138
  • Su G, Yan B. 2010. Nano-combinatorial chemistry strategy for nanotechnology research. J Comb Chem 12:215–21
  • Toropov AA, Toropova AP, Puzyn T, Benfenati E, Gini G, Leszczynska D, Leszczynski J. 2013. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere 92:31–7
  • Toropova AP, Toropov AA, Benfenati E, Korenstein R. 2014. QSAR model for cytotoxicity of SiO2 nanoparticles on human lung fibroblasts. J Nanoparticle Res 16:2282–9
  • Tropsha A. 2010. Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–88
  • Tropsha A, Golbraikh A. 2007. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13:3494–504
  • Varnek A, Fourches D, Horvath D, Klimchuk O, Gaudin C, Vayer P, et al. 2008. ISIDA – platform for virtual screening based on fragment and pharmacophoric descriptors. Curr Comput Aided Drug Des 4:191–8
  • Vilar S, Cozza G, Moro S. 2008. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8:1555–72
  • Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, McCall MJ. 2012. Applying quantitative structure–activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 313:15–23
  • Yan B. 2011. Nano-combinatorial and catalyst screening technologies. Comb Chem High Throughput Screen 14:146–54
  • Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, et al. 2014. Perturbation of physiological systems by nanoparticles. Chem Soc Rev 43:3762–809
  • Zhang Y, Bai Y, Yan B. 2010a. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 15:428–35
  • Zhang B, Xing Y, Li Z, Zhou H, Mu Q, Yan B. 2009. Functionalized carbon nanotubes specifically bind to alpha-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett 9:2280–4
  • Zhang Q, Zhou H, Yan B. 2010b. Reducing nanotube cytotoxicity using a nano-combinatorial library approach. Methods Mol Biol 625:95–107
  • Zheng W, Tropsha A. 2000. Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 40:185–94
  • Zhou H, Mu Q, Gao N, Liu A, Xing Y, Gao S, et al. 2008. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett 8:859–65
  • Zhu H, Rusyn I, Richard A, Tropsha A. 2008a. Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure–activity relationship models of animal carcinogenicity. Environ Health Perspect 116:506–13
  • Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, et al. 2008b. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.