1,223
Views
219
CrossRef citations to date
0
Altmetric
Research Article

Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells

, , , &
Pages 355-364 | Received 24 Mar 2009, Accepted 19 Aug 2009, Published online: 30 Nov 2009

References

  • Albrecht C, Scherbart AM, Van Berlo D, Braunbarth CM, Schins RPF, Scheel J. 2009. Evaluation of cytotoxic effects and oxidative stress with hydroyapatite dispersions of different physicochemical properties in rat NR8383 cells and primary macrophages. Toxicol in Vitro 23:520–530.
  • Ashwood P, Thompson RP, Powell JJ. 2007. Fine particles that adsorb lipopolysaccharide via bridging calcium cations may mimic bacterial pathogenicity towards cells. Exp Biol Med (Maywood) 232(1):107–117.
  • Asuri P, Karajanagi SS, Vertegel AA, Dordick JS, Kane RS. 2007. Enhanced stability of enzymes adsorbed onto nanoparticles. J Nanosci Nanotechnol 74–5:1675–1678.
  • Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Lesniak A, Salvati A, Hanrahan JP, Jong WH, Dziubaltowska E, 2008. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8(9):3069–3074.
  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins RPF, Stone V, Kreyling W, Lademann J, 2006. The potential risks of nanomaterials: A review carried out for ECETOC. Part Fibre Toxicol 3:11.
  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ. 2009. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52.
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199.
  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V. 2004. Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286:L344–353.
  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R. 2008. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(3):241–258.
  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ. 1996. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm Res 13(12):1838–1845.
  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V. 2005. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10.
  • Donaldson K, Borm PJ, Oberdörster G, Pinkerton KE, Stone V, Tran CL. 2008. Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of low-toxicity, low-solubility particles: The key role of the proximal alveolar region. Inhal Toxicol 20(1):53–62.
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19(10):849–856.
  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. 2005. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560.
  • Gurr JR, Wang AS, Chen CH, Jan KY. 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2131–2:66–73.
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983.
  • Jani PU, McCarthy DE, Florence AT. 1994. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. J Pharm 105(2):157–168.
  • Kaittanis C, Naser SA, Perez JM. 2007. One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7:380–383.
  • Lomer MC, Harvey RS, Evans SM, Thompson RP, Powell JJ. 2001. Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn's disease. Eur J Gastroenterol Hepatol 13(2):101–106.
  • Lomer MC, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RP, Powell JJ. 2004. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease. Br J Nutr 92(6):947–955.
  • Monteiro-Riviere NA, Inman AO, Zhang LW. 2009. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235.
  • Mühlfeld C, Gehr P, Rothen-Rutishauser B. 2008. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 13827–28:387–391.
  • Nakagawa Y, Wakuri S, Sakamoto K, Tanaka N. 1997. The photogenotoxicity of titanium dioxide particles. Mutat Res 3941–3:125–132.
  • Nanotechproject homepage. Accessed from the website: http://www.nanotechproject.org/inventories/consumer/browse/products/5107/
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005a. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, 2005b. ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol 2:8.
  • Oberdörster G, Stone V, Donaldson K. 2007. Toxicology of nanoparticles: A historical perspective. Nanotoxicoly 1:2–25.
  • Schins RPF, Duffin R, Höhr D, Knaapen AM, Shi T, Weishaupt C, Stone V, Donaldson K, Borm PJA. 2002. Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem Res Toxicol 15:1166–1173.
  • Schins RP, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol 19Suppl. 1:189–198.
  • Schmid K, Riediker M. 2008. Use of nanoparticles in Swiss Industry: A targeted survey. Environ Sci Technol 42(7):2253–2260.
  • Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Höhr D, Fubini B, Fenoglio I, Martra G, Borm PJA, Schins RPF. 2007. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of particle surface area and of surface methylation of the particles. Toxicol Applied Pharmacol 222:141–151.
  • Speit G, Schütz P, Bonzheim I, Trenz K, Hoffmann H. 2004. Sensitivity of the FPG protein towards alkylation damage in the comet assay. Toxicol Lett 146(2):151–158.
  • Stoeger T, Takenaka S, Frankenberger B, Ritter B, Karg E, Maier K, Schulz H, Schmid O. 2009. Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds. Environ Health Perspect 117:54–60.
  • Stone V, Johnston H, Schins RPF. 2009. Development of in vitro systems for nanotoxicology – methodological considerations. Crit Rev Toxicol 39:613–626.
  • Taylor TM, Davidson PM, Bruce BD, Weiss J. 2005. Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 457–8:587–605.
  • Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D. 2007. An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles. Mutat Res 6341–2:205–219.
  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M. 2008. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:795–821.
  • Unfried K, Albrecht C, Klotz LO, von Mikecz A, Grether-Beck S, Schins RPF. 2007. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 1:52–71.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.