672
Views
85
CrossRef citations to date
0
Altmetric
Research Article

The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events

, , , , , , , , , , , & show all
Pages 52-72 | Received 29 May 2009, Accepted 29 Sep 2009, Published online: 18 Nov 2009

References

  • Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD. 2005. Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62.
  • Bastús NG, Sánchez-Tilló E, Pujals S, Farrera C, Kogan MJ, Giralt E, Celada A, Lloberas J, Puntes V. 2009. Peptides conjugated to gold nanoparticles induce macrophage activation. Mol Immunol 46:743–748.
  • Batarseh KI. 2008. A novel silver (I) chelate: Cytotoxicity and apoptotic mechanism of action on human hematopoietic malignancies. Leukemia 22:448–450.
  • Bleck B, Tse DB, Jaspers I, Curotto de Lafaille MA, Reibman J. 2006. Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation. J Immunol 176:7431–7437.
  • Bonassi S, Fenech M, Lando C, Lin YP, Ceppi M, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, 2001. Human MicroNucleus project: International database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environ Mol Mutagen 37:31–45.
  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, 2006. The potential risks of nanomaterials: A review carried out for ECETOC. Part Fibre Toxicol 3:11.
  • Bossù P, Del Grosso E, Cesaroni MP, Maurizi G, Balestro N, Stoppacciaro A, Del Giudice E, Ruggiero P, Boraschi D. 2001. Balance between autocrine interleukin-1beta and caspases defines life versus death of polymorphonuclear cells. Eur Cytokine Netw 12:177–186.
  • Carfi' M, Gennari A, Malerba I, Corsini E, Pallardy M, Pieters R, Van Loveren H, Vohr HW, Hartung T, Gribaldo L. 2007. In vitro tests to evaluate immunotoxicity: A preliminary study. Toxicology 229:11–22.
  • Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G. 2007. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425–1432.
  • Chen ZP, Xu RZ, Zhang Y, Gu N. 2009. Effects of proteins from culture medium on surface property of silanes- functionalized magnetic nanoparticles. Nanoscale Res Lett 4:204–209.
  • Choi J-Y, Ramachandran G, Kandlikar M. 2009. The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 43:3030–3034.
  • Collins AR, Dusinská M, Gedik CM, Stetina R. 1996. Oxidative damage to DNA: Do we have a reliable biomarker? Environ Health Perspect 104(Suppl. 3):465–469.
  • Colognato R, Bonelli A, Bonacchi D, Baldi G, Migliore L. 2007a. Analysis of cobalt ferrite nanoparticles induced genotoxicity on human peripheral lymphocytes: comparison of size and organic grafting-dependent effects. Nanotoxicology 1:301–308.
  • Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L. 2008. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23:377–382.
  • Colognato R, Coppedè F, Ponti J, Sabbioni E, Migliore L. 2007b. Genotoxicity induced by arsenic compounds in peripheral human lymphocytes analysed by cytokinesis-block micronucleus assay. Mutagenesis 22:255–261.
  • Dawson KA, Salvati A, Lynch I. 2009. Nanotoxicology: nanoparticles reconstruct lipids. Nat Nanotechnol 4:84–85.
  • De Haar C, Kool M, Hassing I, Bol M, Lambrecht BN, Pieters R. 2008. Lung dendritic cells are stimulated by ultrafine particles and play a key role in particle adjuvant activity. J Allergy Clin Immunol 121:1246–1254.
  • De Smedt AC, Van Den Heuvel RL, Van Tendeloo VF, Berneman ZN, Schoeters GE. 2005. Capacity of CD34+ progenitor-derived dendritic cells to distinguish between sensitizers and irritants. Toxicol Lett 156:377–389.
  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. 2008. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5:487–495.
  • Don Porto Carero A, Hoet PH, Verschaeve L, Schoeters G, Nemery B. 2001. Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol Mutagen 37:155–163.
  • Dos Santos GG, Reinders J, Ouwehand K, Rustemeyer T, Scheper RJ, Gibbs S. 2009. Progress on the development of human in vitro dendritic cell-based assays for assessment of the sensitizing potential of a compound. Toxicol Appl Pharmacol 236:372–382.
  • Faunce TA, White J, Matthaei KI. 2008. Integrated research into the nanoparticle-protein corona: A new focus for safe, sustainable and equitable development of nanomedicines. Nanomed 3:859–866.
  • Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104.
  • Gwinn MR, Vallyathan V. 2006. Nanoparticles: Health effects – pros and cons. Environ Health Perspect 114:1818–1825.
  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. 2007. Characterization of nanoparticles for therapeutics. Nanomed 2:789–803.
  • Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ. 2009a. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234:378–390.
  • Herzog E, Byrne HJ, Davoren M, Casey A, Duschl A, Oostingh GJ. 2009b. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicol Appl Pharmacol 236:276–281.
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro 19:975–983.
  • Inoue K, Koike E, Takano H, Yanagisawa R, Ichinose T, Yoshikawa T. 2009. Effects of diesel exhaust particles on antigen-presenting cells and antigen-specific Th immunity in mice. Exp Biol Med (Maywood) 234:200–209.
  • Jain PK, El-Sayed IH, El-Sayed MA. 2007. Au nanoparticles target cancer. Nano Today 2:18–29.
  • Jana NR, Gearheart L, Murphy CJ. 2001. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786.
  • Kelly KL, Coronado E, Zhao LL, Schatz GC. 2003. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677.
  • Koike E, Takano H, Inoue K, Yanagisawa R, Kobayashi T. 2008. Carbon black nanoparticles promote the maturation and function of mouse bone marrow-derived dendritic cells. Chemosphere 73:371–376.
  • Lardon F, Snoeck HW, Berneman ZN, Van Tendeloo VF, Nijs G, Lenjou M, Henckaerts E, Boeckxtaens CJ, Vandenabeele P, Kestens LL, 1997. Generation of dendritic cells from bone marrow progenitors using GM-CSF, TNF-alpha, and additional cytokines: Antagonistic effects of IL-4 and IFN-gamma and selective involvement of TNF-alpha receptor-1. Immunology 91:553–559.
  • Lewinski N, Colvin V, Drezek R. 2008. Cytotoxicity of nanoparticles. Small 4:26–49.
  • Li-Weber M, Giasi M, Krammer PH. 1998. Involvement of Jun and Rel proteins in up-regulation of interleukin-4 gene activity by the T cell accessory molecule CD28. J Biol Chem 273:32460–32466.
  • Li N, Xia T, Nel AE. 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699.
  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. 2007. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163.
  • Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalán J, Savolainen K, Norppa H. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173.
  • Lindstedt M, Johansson-Lindbom B, Borrebaeck CA. 2002. Global reprogramming of dendritic cells in response to a concerted action of inflammatory mediators. Int Immunol 14:1203–1213.
  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. 2007. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174.
  • Martinez FO, Sica A, Mantovani A, Locati M. 2008. Macrophage activation and polarization. Front Biosci 13:453–461.
  • Monteiro-Riviere NA, Inman AO, Zhang LW. 2009. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol 2:8.
  • Oostingh GJ, Schmittner M, Ehart AK, Tischler U, Duschl A. 2008. A high-throughput screening method based on stably transformed human cells was used to determine the immunotoxic effects of fluoranthene and other PAHs. Toxicol In Vitro 22:1301–1310.
  • Park EJ, Choi J, Park YK, Park K. 2008. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100.
  • Pfaller T, Puntes V, Casals E, Duschl A, Oostingh G. 2009. In vitro investigation of immunomodulatory effects caused by engineered inorganic nanoparticles – the impact of experimental design and cell choice. Nanotoxicology 3:46–59.
  • Porter M, Karp M, Killedar S, Bauer SM, Guo J, Williams D, Breysse P, Georas SN, Williams MA. 2007. Diesel-enriched particulate matter functionally activates human dendritic cells. Am J Respir Cell Mol Biol 37:706–719.
  • Powell JJ, Ainley CC, Harvey RSJ, Mason IM, Kendall MD, Sankey EA, Dhillon AP, Thompson RPH. 1996. Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue. Gut 38:390–395.
  • Pujals S, Bastús NG, Pereiro E, López-Iglesias C, Puntes VF, Kogan MJ, Giralt E. 2009. Shuttling gold nanoparticles into tumoral cells with an amphipathic proline-rich peptide. Chembiochem 10:1025–1031.
  • Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP. 2002. Synthesis of hcp-Co nanodisks. J Am Chem Soc 124:12874–12880.
  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. 2005. The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell function characteristics. Cell Biol Toxicol 21:1–26.
  • Schins RP, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol 19(Suppl. 1):189–198.
  • Schoeters E, Verheyen GR, Nelissen I, Van Rompay AR, Hooyberghs J, Van Den Heuvel RL, Witters H, Schoeters GE, Van Tendeloo VF, Berneman ZN. 2007. Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol 44:3222–3233.
  • Schulze C, Kroll A, Lehr C-M, Schäfer UF, Becker K, Schnekenburger J, Schulze Isfort C, Landsiedel R, Wohlleben W. 2008. Not ready to use – overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2:51–61.
  • Service RF. 2008. Nanotechnology. Can high-speed tests sort out which nanomaterials are safe? Science 321:1036–1037.
  • Surrallés J, Xamena N, Creus A, Catalán J, Norppa H, Marcos R. 1995. Induction of micronuclei by five pyrethroid insecticides in whole-blood and isolated human lymphocyte cultures. Mutat Res 341:169–184.
  • Tang J, Myers M, Bosnick KA, Brus LE. 2003. Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J Phys Chem B 107:7501–7506.
  • Tetley TD. 2007. Health effects of nanomaterials. Biochem Soc Trans 35:527–531.
  • Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, Scheynius A, Gabrielsson S. 2006. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 6:1682–1686.
  • Verstraelen S, Van Den Heuvel R, Nelissen I, Witters H, Verheyen G, Schoeters G. 2005. Flow cytometric characterisation of antigen presenting dendritic cells after in vitro exposure to diesel exhaust particles. Toxicol In Vitro 19:903–907.
  • Wang H, Joseph JA. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616.
  • Warheit DB. 2008. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101:183–185.
  • Wichmann G, Mühlenberg J, Fischäder G, Kulla C, Rehwagen M, Herbarth O, Lehmann I. 2005. An experimental model for the determination of immunomodulating effects by volatile compounds. Toxicol In Vitro 19:685–693.
  • Wittmaack K. 2007. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: Particle number, surface area, or what? Environ Health Perspect 115:187–194.
  • Wörle-Knirsch JM, Pulskamp K, Krug HF. 2006. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.