19
Views
3
CrossRef citations to date
0
Altmetric
REVIEW ARTICLES

Inflammation after renal transplantation: Role in the development of graft dysfunction and potential therapies

, MD
Pages 233-241 | Published online: 18 Nov 2009

References

  • Mitchell, RN, Cotran, RS. Acute and chronic inflammation. In: RS Cotran, Kumar, V, Collins, T, Robbins, SL. Robbins pathologic basis of disease6th ed, Philadelphia, PA: W.B Saunders; 1999; 50–88.
  • Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol 2005; 6: 1191–7
  • Guild WR, Harrison JH, Merrill JP, Murray J. Successful homotransplantation of the kidney in an identical twin. Trans Am Clin Climatol Assoc 1955; 67: 167–73
  • Amlot PL, Rawlings E, Fernando ON, Griffin PJ, Heinrich G, Schreier MH, et al. Prolonged action of a chimeric interleukin-2 receptor (CD25) monoclonal antibody used in cadaveric renal transplantation. Transplantation 1995; 60: 748–56
  • Vincenti F, Lantz M, Birnbaum J, Garovoy M, Mould D, Hakimi J, et al. A phase I trial of humanized anti-interleukin-2 receptor antibody in renal transplantation. Transplantation 1997; 63: 33–8
  • Knechtle SJ, Pirsch JD, H Fechner J, Jr, Becker BN, Friedl A, Colvin RB, et al. Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transpl 2003; 3: 722–30
  • Henry ML, Elkhammas EA, Davies EA, Ferguson RM. A clinical trial of cyclosporine G in cadaveric renal transplantation. Pediatr Nephrol 1995; 9(Suppl)S49–51
  • Calne, RY, White, DJ, Thiru, S, Rolles, K, Drakopoulos, S, Jamieson, NV. Cyclosporin G: immunosuppressive effect in dogs with renal allografts. Lancet 1985;i: 1342.
  • Platz KP, Sollinger HW, Hullett DA, Eckhoff DE, Eugui EM, Allison AC. RS-61443–-a new, potent immunosuppressive agent. Transplantation 1991; 51: 27–31
  • Kahan B. Concentration-controlled immunosuppressive regimens using cyclosporine with sirolimus or brequinar in human renal transplantation. Transplant Proc 1995; 27: 33–6
  • Land W. Post-ischemic reperfusion injury and allograft dysfunction: is allograft rejection the result of a fateful confusion by the immune system of danger and benefit?. Transplant Proc 1999; 31: 332–6
  • Tilney NL, Guttmann RD. Effects of initial ischemia/reperfusion injury on the transplanted kidney. Transplantation 1997; 64: 945–7
  • Torras J, Cruzado JM, Grinyo JM. Ischemia and reperfusion injury in transplantation. Transplant Proc 1999; 31: 2217–8
  • Takada M, Nadeau KC, Shaw GD, Marquette KA, Tilney NL. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. J Clin Invest 1999; 99: 2682–90
  • Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol 1999; 277: R922–9
  • Burne-Taney MJ, Kofler J, Yokota N, Weisfeldt M, Traystman RJ, Rabb H. Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. Am J Physiol Renal Physiol 2003; 285: F87–94
  • Solez K, Morel-Maroger L, Sraer JD. The morphology of “acute tubular necrosis” in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 1979; 58: 362–76
  • Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int 2004; 66: 486–91
  • Araki M, Fahmy N, Zhou L, Kumon H, Krishnamurthi V, Goldfarb D, et al. Expression of IL-8 during reperfusion of renal allografts is dependent on ischemic time. Transplantation 2006; 81: 783–8
  • Passwell J, Schreiner GF, Nonaka M, Beuscher HU, Colten HR. Local extrahepatic expression of complement genes C3, factor B, C2, and C4 is increased in murine lupus nephritis. J Clin Invest 1988; 82: 1676–84
  • Pratt JR, Basheer SA, Sacks SH. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med 2002; 8: 582–7
  • Pratt JR, Abe K, Miyazaki M, Zhou W, Sacks SH. In situ localization of C3 synthesis in experimental acute renal allograft rejection. Am J Pathol 2000; 157: 825–31
  • McLaren AJ, Jassem W, Gray DWR, Fuggle SV, Welsh KI, Morris PJ. Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation. Clin Transplant 1999; 13: 266–72
  • Patel NSA, Chatterjee PK, Di Paola R, Mazzon E, Britti D, De Sarro A, et al. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J Pharmacol Exp Ther 2005; 312: 1170–8
  • Ogawa T, Mimura Y. Antioxidant effect of zinc on acute renal failure induced by ischemia-reperfusion injury in rats. Am J Nephrol 1999; 19: 609–14
  • Singbartl K, Green SA, Ley K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J 2000; 14: 48–54
  • Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, et al. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol 2004; 287: F979–89
  • Jo S-K, Sung S-A, Cho W-Y, Go K-G, Kim H-K. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant 2006; 21: 1231–9
  • Vos IHC, Govers R, Gröne H-J, Kleij L, Schurink M, Weger de RA, et al. NFkB decoy oligodeoxynucleotides reduce monocyte infiltration in renal allografts. FASEB J 2000; 14: 815–22
  • Morrissey, J, KIahr, S. Arginine administration blunts activation of nuclear factor kB in the kidney of rats with ureteral obstruction [Abstract]. J Am Soc Nephrol 1997;8:A1541.
  • Haberstroh U, Stilo K, Pocock J, Wolf G, Helmchen U, Wenzel U, et al. L-arginine suppresses lipopolysaccharide-induced expression of RANTES in glomeruli. J Am Soc Nephrol 1998; 9: 203–10
  • Peng HB, Rajavashisth TB, Libby P, Liao JK. Nitric oxide inhibits macrophage-colony stimulating factor gene transcription in vascular endothelial cells. J Biol Chem 1995; 270: 17050–5
  • Vos IHC, Rabelink TJ, Dorland B, Loos R, Van Middelaar B, Gröne H-L, et al. L-Arginine supplementation improves function and reduces inflammation in renal allografts. J Am Soc Nephrol 2001; 12: 361–7
  • Pratt JR, Jones ME, Dong J, Zhou W, Chowdhury P, Smith RAG, et al. Nontransgenic hyperexpression of a complement regulator in donor kidney modulates transplant ischemia/reperfusion damage, acute rejection, and chronic nephropathy. Am J Pathol 2003; 163: 1457–65
  • Wyburn KR, Jose MD, Wu H, Atkins RC, Chadban S. The role of macrophages in allograft rejection. Transplantation 2005; 80: 1641–7
  • Sayegh MH, Turka LA. The role of T cell costimulatory activation in transplant rejection. N Engl J Med 1998; 338: 1813–21
  • Sherman LA, Chattopadhyay S. The molecular basis of allorecognition. Annu Rev Immunol 1993; 11: 385–402
  • Liu Z, Colovai AI, Tugulea S, Reed EF, Fisher PE, Mancini D, et al. Indirect recognition of donor HLA-DR peptides in organ allograft rejection. J Clin Invest 1996; 98: 1150–7
  • Vella JP, Magee C, Vos L, Womer K, Rennke H, Carpenter CB, et al. Cellular and humoral mechanisms of vascularized allograft rejection induced by indirect recognition of donor MHC allopeptides. Transplantation 1999; 67: 1523–32
  • Habicht A, Sayegh MH. T cell costimulatory pathways in allograft rejection and tolerance: what's new?. Curr Opin Org Transpl 2007; 12: 17–22
  • Clarkson MR, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance. Transplantation 2005; 80: 555–63
  • Yamada A, Salama AD, Sayegh MH. The role of novel T cell costimulatory pathways in autoimmunity and transplantation. J Am Soc Nephrol 2002; 13: 559–75
  • Fuggle SV, Koo DD. Cell adhesion molecules in clinical renal transplantation. Transplantation 1998; 65: 763–9
  • Luster AD. Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 1998; 338: 436–45
  • Hancock WW, Gao W, Faia KL, Csizmadia V. Chemokines and their receptors in allograft rejection. Curr Opin Immunol 2000; 12: 511–6
  • Bierer BE, Hollander G, Fruman D, Burakoff SJ. Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes for transplantation biology. Curr Opin Immunol 1993; 5: 763–73
  • Tullius SG, Tilney NL. Both alloantigen-dependent and -independent factors influence chronic allograft rejection. Transplantation 1995; 59: 313–8
  • Le Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation 2002; 73: 1373–81
  • Perez RV, Brown DJ, Katznelson SA, Dubin JA, Müller HG, Chang T, et al. Pretransplant systemic inflammation and acute rejection after renal transplantation. Transplantation 2000; 69: 869–74
  • Lessan-Pezeshki M, Airzargar A, Fathi A, Katami MR, Enollahi B, Purfarziani V, et al. Value of pretransplantation cytokine profiles for predicting acute rejection in renal transplant recipients. Transpl Proc 2005; 37: 2982–4
  • Sankaran D, Asderakis A, Ashraf S, Roberts ISD, Short CD, Dyer PA, et al. Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney Int 1999; 56: 281–8
  • Loucaidou M, Stitchbury J, Lee J, Borrows R, Marshall S, McLean A, et al. Cytokine polymorphisms do not influence acute rejection in renal transplantation under tacrolimus-based immunosuppression. Transpl Proc 2005; 37: 1760–1
  • Zhao X-M, Frist WH, Yeoh T-K, Miller GG. Expression of cytokine genes in human cardiac allografts: correlation of IL-6 and transforming growth factor-beta (TGF-beta) with histological rejection. Clin Exp Immunol 1993; 93: 448–51
  • Di Paolo S, Gesualdo L, Stallone G, Ranieri E, Schena FP. Renal expression and urinary concentration of EGF and IL-6 in acutely dysfunctioning kidney transplanted patients. Nephrol Dial Transpl 1997; 12: 2687–93
  • Borel IM, Racca A, Garcia MI, Bailat A, Quiroga F, Soutullo A, et al. T cells and interleukin-6 levels could provide information regarding the progression of human renal allograft. Scand J Immunol 2003; 58: 99–105
  • Butcher EC. Leukocyte-endothelial cell recognition. Three (or more) steps to specificity and diversity. Cell 1991; 67: 1033–6
  • Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996; 272: 60–6
  • Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301–14
  • Nelson PJ, Krensky AM. Chemokines, lymphocyte biology and viruses: what goes around, comes around. Curr Opin Immunol 1998; 10: 265–70
  • Schlöndorff D, Nelson PJ, Luckow B, Banas B. Chemokines in renal disease. Kidney Int 1997; 51: 610–21
  • Gröne H-J, Weber C, Weber KSC, Gröne EF, Rabelink T, Klier CM, et al. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J 1999; 13: 1371–83
  • Solez K, Axelsen RA, Benediktsson H, Burdick JF, Cohen AH, Colvin RB, et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int 1993; 44: 411–22
  • Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999; 55: 713–23
  • Hayry P, Aavik E, Savolainen H. Mechanisms of chronic rejection. Transplant Proc 1999; 31: 5S–8S
  • Kouwenhoven EA, Ijzermans JNM, de Bruin RWE. Etiology and pathophysiology of chronic transplant dysfunction. Transpl Int 2000; 13: 385–401
  • Libby P, Pober JS. Chronic rejection. Immunity 2001; 14: 387–97
  • Nadasdy T, Krenacs T, Kalmar KN, Csajbok E, Bouda K, Ormos J. Importance of plasma cells in the infiltrate of renal allografts. An immunohistochemical study. Pathol Res Pract 1991; 187: 178–83
  • Stein-Oakley AN, Jablonski P, Tzanidis A, Baxter K, Howden BO, Marshall VC, et al. Development of chronic injury and nature of interstitial infiltrate in a model of chronic renal allograft rejection. Transplantation 1993; 56: 1299–305
  • Paul LC, Grotfiman GT, Benediktsson H, Davidoff A, Rozing J. Macrophage subpopulations in normal and transplanted heart and kidney tissues in the rat. Transplantation 1992; 53: 157–62
  • Gouldesbrough DR, Axelsen RA. Arterial endothelialitis in chronic renal allograft rejection: a histopathological and immunocytochemical study. Nephrol Dial Transpl 1994; 9: 35–40
  • Lowry RP, Takeuchi T, Cremisi H, Konieczny B, Someren A. Chronic rejection of organ allografts may arise from injuries sustained in recurring foci of acute rejection that resolve spontaneously. Transplant Proc 1993; 25: 2103–5
  • Rusu DN, Henry SF, Jeffery JR, Schroeder TJ, Cough J. Histological findings in early routine biopsies of stable renal allograft recipients. Transplantation 1994; 57: 208–11
  • Hutchinson IV. Immunological mechanisms of long-term graft acceptance. Organ transplantation. Long-term results, LC Paul, K Solez. Marcel Dekker, New York 1992; 1–31
  • Paul LC, Baldwin WM, Van Es LA. Vascular endothelial alloantigens in renal transplantation. Transplantation 1985; 40: 117–23
  • Colson YL, Markus BH, Zeevi A, Duquesnoy RJ. Interactions between endothelial cells and alloreactive T cells involved in graft immunity. Transplant Proc 1988; 20: 273–5
  • Miltenburg AMM, Meijer-Paape ME, Daha MR, Paul LC. Endothelial cell lysis induced by lymphokine activated human peripheral blood mononuclear cells. Eur J Immunol 1987; 17: 1383–6
  • Bender JR, Pardi R, Engleman E. T-cell receptor-negative natural killer cells display antigen-specific cytotoxicity for microvascular endothelial cells. Proc Natl Acad Sci U S A 1990; 87: 6949–53
  • Paul LC, Benediktsson H, Davidoff A, Issekutz TB. Effect of LFA-1 and VLA-4 antibody treatment on rat vascularized cardiac allograft rejection. Transplantation 1993; 55: 1196–9
  • Hribova P, Lacha J, Kotsch K, Volk H-D, Brabcova I, Skibova J, et al. Intrarenal cytokine and chemokine gene expression and kidney graft outcome. Kidney Blood Press Res 2007; 30: 273–82
  • Haskell CA, Ribeiro S, Horuk R. Chemokines in transplant rejection. Curr Opin Investig Drugs 2002; 3: 399–405
  • Nagano H, Libby P, Taylor MK, Hasegawa S, Stinn JL, Becker G, et al. Coronary arteriosclerosis after T-cell-mediated injury in transplanted mouse hearts: role of interferon-gamma. Am J Pathol 1998; 152: 1187–97
  • Halloran PF, Melk A, Barth C. Rethinking chronic allograft nephropathy: the concept of accelerated senescence. J Am Soc Nephrol 1999; 10: 167–81
  • Müller-Steinhardt M, Hartel C, Müller B, Kirchner H, Fricke L. The interleukin-6 −174 promoter polymorphism is associated with long-term kidney allograft survival. Kidney Int 2002; 62: 1824–7
  • Adams J, Kiss E, Arroyo ABV, Bonrouhi M, Sun Q, Li Z, et al. 13-cis retinoic acid inhibits development and progression of chronic allograft nephropathy. Am J Pathol 2005; 167: 285–98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.