Publication Cover
Mitochondrial DNA Part A
DNA Mapping, Sequencing, and Analysis
Volume 27, 2016 - Issue 1
199
Views
13
CrossRef citations to date
0
Altmetric
Full Length Research Paper

Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective

, , , , , & show all
Pages 455-462 | Received 22 Jan 2014, Accepted 01 Mar 2014, Published online: 08 Apr 2014

References

  • Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, et al. (2010). Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci USA 107:11459–64
  • Bigham AW, Mao X, Mei R, Brutsaert T, Wilson MJ, Julian CG, Parra EJ, et al. (2009). Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum Genomics 4:79
  • BirdLife International. (2013). One in eight of all bird species is threatened with global extinction. Presented as part of the BirdLife State of the world’s birds website. Downloaded from http://www.birdlife.org (Accessed 31 March 2013)
  • Chiappe LM. (2007). Glorified dinosaurs: The origin and early evolution of birds. Hoboken, NJ: John Wiley
  • Darriba D, Taboada GL, Doallo R, Posada D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nat Methods 9:772
  • DeLano WL. (2002). The PyMOL molecular graphics system, Version 1.5.0.4: Schrödinger, LLC. San Carlos, CA, USA: DeLano Scientific
  • Dirocco F, Zambelli A, Rioja LV. (2009). Identification of camelid specific residues in mitochondrial ATP synthase subunits. J Bioenerg Biomembr 41:223–8
  • Dolla A, Blanchard L, Guerlesquin F, Bruschi M. (1994). The protein moiety modulates the redox potential in cytochromes c. Biochimie 76:471–9
  • Efremov RG, Sazanov LA. (2011). Structure of the membrane domain of respiratory complex I. Nature 476:414–20
  • Foote AD, Morin PA, Durban JW, Pitman RL, Wade P, Willersiev E, Gilbert MTP, et al. (2011). Positive selection on the killer whale mitogenome. Biol Lett 7:116–18
  • Fuller RA, Carroll JP, Macgowan PJ. (2000). Partridges, Quails, Francolins, Snowcocks, Guineafowls, and Turkeys: Status Survey and Conservation Action Plan 2000–2004. WPA/BirdLife/SSC Partridge, Quail, and Francolin Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK, and the World Pheasant Association, Reading, UK, vii + 63 pp
  • Grantham R. (1974). Amino acid difference formula to help explain protein evolution. Science 185:862–4
  • Gromiha MM, Ponnuswamy P. (1993). Relationship between amino acid properties and protein compressibility. J Theor Biol 165:87–100
  • Guindon S, Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704
  • Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–8
  • Hassanin A, Ropiquet A, Couloux A, Cruaud C. (2009). Evolution of the mitochondrial genome in mammals living at high altitude: New insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol 68:293–310
  • Jukes TH, Cantor CR. (1969). Evolution of protein molecules. In: Munro HN, ed. Mammalian protein metabolism. III. New York: Academic Press. p. 121–32
  • Krogh A, Larsson B, Vonheijne G, Sonnhammer EL. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305:567–80
  • Labie D, Elion J. (2012). Genetics of Adaptation to High Altitude. eLS
  • Liu W, Yao Y, Zhou L, Ni Q, Xu H. (2013). Evolutionary analysis of the short-type peptidoglycan-recognition protein gene (PGLYRP1) in primates. Genet Mol Res 12:453–62
  • Luo Y, Gao W, Gao Y, Tang S, Huang Q, Tan X, Chen J, et al. (2008). Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion 8:352–7
  • Mcclellan D, Palfreyman E, Smith M, Moss J, Christensen R, Sailsbery J. (2005). Physicochemical evolution and molecular adaptation of the cetacean and artiodactyl cytochrome b proteins. Mol Biol Evol 22:437–55
  • Mcclellan DA, Mccracken KG. (2001). Estimating the influence of selection on the variable amino acid sites of the cytochrome b protein functional domains. Mol Biol Evol 18:917–25
  • Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, et al. (2003). Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171–6
  • Myers P, Espinosa R, Parr CS, Jones T, Hammond GS, Dewey TA. (2014). The animal diversity web (online). Available at: http://animaldiversity.org (Accessed 31 March 2013)
  • Naish D. (2011). Glorified dinosaurs: The origin and early evolution of birds. Historical Biology 23:435–8
  • Ning T, Xiao H, Li J, Hua S, Zhang Y. (2010). Adaptive evolution of the mitochondrial ND6 gene in the domestic horse. Genet Mol Res 9:144–50
  • Ohtani H, Nakajima T, Akari H, Ishida T, Kimura A. (2011). Molecular evolution of immunoglobulin superfamily genes in primates. Immunogenetics 63:417–28
  • Palmer WE, Carroll JP. (2003). Pheasants, Partridges, and Grouse. A guide to the Pheasants, Partridges, Quails, Grouse, Guineafowl, Buttonquails, and Sandgrouse of the World. USA: Princeton University Press
  • Peng Q, Tang L, Tan S, Li Z, Wang J, Zou F. (2012). Mitogenomic analysis of the genus Pseudois: Evidence of adaptive evolution of morphological variation in the ATP synthase genes. Mitochondrion 12:500–5
  • Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, et al. (2011). Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol 28:1075–81
  • Prahhakaran M, Ponnuswamy P. (1979). The spatial distribution of physical, chemical, energetic and conformational properties of amino acid residues in globular proteins. J Theor Biol 80:485–504
  • Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, et al. (2012). The yak genome and adaptation to life at high altitude. Nat Genet 44:946–9
  • Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, Tian S, et al. (2013). Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun 4:2071–9
  • Rastogi VK, Girvin ME. (1999). Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–8
  • Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC. (2004). Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–6
  • Scheinfeldt LB, Soi S, Thompson S, Ranciaro A, Meskel D, Beggs W, Lambert C, et al. (2012). Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol 13:R1
  • Scott GR. (2011). Elevated performance: The unique physiology of birds that fly at high altitudes. J Exp Biol 214:2455–62
  • Scott GR, Schulte PM, Egginton S, Scott AL, Richards JG, Millsom WK. (2011). Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Mol Biol Evol 28:351–63
  • Shen YY, Liang L, Sun YB, Yue BS, Yang XJ, Murphy RW, Zhang YP. (2010). A mitogenomic perspective on the ancient, rapid radiation in the Galliformes with an emphasis on the Phasianidae. BMC Evol Biol 10:132
  • Shen YY, Shi P, Sun YB, Zhang YP. (2009). Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res 19:1760–5
  • Storz JF, Sabatino SJ, Hoffmann FG, Gering EJ, Moriyama H, Ferrand N, Monteiro B, et al. (2007). The molecular basis of high-altitude adaptation in deer mice. PLoS Genet 3:e45
  • Storz JF, Scott GR, Cheviron ZA. (2010). Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol 213:4125–36
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–9
  • Wallace DC. (1999). Mitochondrial diseases in man and mouse. Science 283:1482–8
  • Wallace DC. (2007). Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821
  • Wooding S. (2011). Signatures of natural selection in a primate bitter taste receptor. J Mol Evol 73:257–65
  • Woolley S, Johnson J, Smith MJ, Crandall KA, Mcclellan DA. (2003). TreeSAAP: Selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–2
  • Xu S, Li S, Yang Y, Tan J, Lou H, Jin W, Yang L, et al. (2011). A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol Biol Evol 28:1003–11
  • Xu S, Luo SJ, Hua S, He J, Ciren A, Wang W, Tong X, et al. (2007). High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome. J Genet Genomics 34:720–9
  • Xu SQ, Yang YZ, Zhou J, Jing GE, Chen YT, Wang J, Yang HM, et al. (2005). A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii). Genomics Proteomics Bioinformatics 3:5–17
  • Yang J, Wang ZL, Zhao XQ, Xu BH, Ren YH, Tian HF. (2008). Natural selection and adaptive evolution of leptin in the ochotona family driven by the cold environmental stress. PLoS One 3:e1472
  • Yang Z. (1998). Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–73
  • Yang Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–91
  • Yi X, Liang Y, Huerta-sabcgez E, Jin X, Ccuo ZXP, Pool JE, Xu X, et al. (2010). Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–8
  • Yu L, Wang X, Ting N, Zhang Y. (2011). Mitogenomic analysis of Chinese snub-nosed monkeys: Evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. Mitochondrion 11:497–503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.