Publication Cover
Mitochondrial DNA Part A
DNA Mapping, Sequencing, and Analysis
Volume 27, 2016 - Issue 4
74
Views
13
CrossRef citations to date
0
Altmetric
Full Length Research Paper

Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi

Pages 2440-2446 | Received 24 Jan 2015, Accepted 22 Mar 2015, Published online: 13 Apr 2015

References

  • Albrecht-Buehler G. (2006). Asymptotically increasing compliance of genomes with Chargaff's second parity rules through inversions and inverted transpositions. Proc Natl Acad Sci USA 103:17828–33
  • Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucliec Acids Res 25:3389–402
  • Bendich AJ. (1987). Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays 6:279–82
  • Caesar RM, Wenzel JW. (2009). A phylogenetic test of classical species groups in Argia (Odonata: Coenagrionidae). Entomol Am 115:97–108
  • Carter CW Jr, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, et al. (2014). The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: An unlikely scenario for the origins of translation that will not be dismissed. Biol Direct 9:11
  • Chandrasekaran SN, Yardimci GG, Erdogan O, Roach J, Carter CW Jr. (2013). Statistical evaluation of the Ron-Ohno hypothesis: Sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases. Mol Biol Evol 30:1588–604
  • Dickinson A, Yeung KY, Donoghue J, Baker MJ, Kelly RDW, McKenzie M, Johns TG, et al. (2013). The regulation of mitochondrial copy number in glioblastoma cells. Cell Death Differ 20:1644–53
  • Elbrecht V, Poettker L, John U, Leese F. (2013). The complete mitochondrial genome of the stonefly Dinocras cephalotes (Plecoptera, Perlidae). Mitochondrial DNA. In press
  • Esguerra M, Nilsson L, Villa A. (2015). Triple helical DNA in a duplex context and base pairing. Nucleic Acids Res 42:11329–38
  • Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy R-M. (2011). Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 6:56
  • Fimmel E, Giannerini S, Gonzalez DL, Struengmann L. (2014). Circular codes, symmetries and transformations. J Math Biol. In press
  • Fonseca MM, Harris DJ. (2008). Relationship between mitochondrial gene rearrangements and stability of the origin of light strand replication. Genetics Mol Biol 31:566–74
  • Fonseca MM, Harris DJ, Posada D. (2014). The inversion of the control region in three mitogenomes provides further evidence for an asymmetric model of vertebrate mtDNA replication. PloS One 9:e106654
  • Fort P, Bonhomme F, Darlu P Piechaczyk M, Jeanteur P, Thaler L. (1984). Clonal divergence of mitochondrial DNA versus populational evolution of nuclear genome. Evol Theory 7:81–90
  • Fonseca MM, Posada D, Harris DJ. (2008). Inverted replication of vertebrate mitochondria. Mol Biol Evol 25:805–8
  • Gamboa M, Kimbirauskas RK, Merritt RW, Monaghan MT. (2012). A molecular approach to identifying the natural prey of the African creeping water bug Naucoris, a potential reservoir of Mycobacterium ulcerans. J Insect Sci 12:2
  • Gonzalez DL, Giannerini S, Rosa R. (2012). On the origin of the mitochondrial genetic code: Towards a unified mathematical framework for the management of genetic information. Nature Precedings, https://doi.org/http://dx.doi.org/10.1038/npre.2012.7136.1
  • Guillet S, Vancassel M. (2001). Dermapteran life-history evolution and phylogeny with special reference to the Forficulidae family. Evol Ecol Res 3:441–7
  • Ivanova NN, Schwientek P, Tripp J, Rinke C, Pati A, Huntemann M, Visel A, et al. (2014). Stop codon reassignments in the wild. Science 344:909–13
  • Jackman JE, Gott JM, Gray MW. (2012). Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA 18:886–99
  • Khaidakov M, Siegel ER, Reis RJS. (2006). Direct repeats in mitochondrial DNA and mammalian lifespan. Mech Ageing Dev 127:808–12
  • Khrapko K, Bodyak N, Thilly WG, van Orsouw NJ, Zhang X, Coller HA, Perms TT, et al. (1999). Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res 27:2434–41
  • Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. (2006). Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–20
  • Lee HR, Johnson KA. (2006). Fidelity of the human mitochondrial DNA polymerase. J Biol Chem 281:36236–40
  • Lestienne P. (2009). Are there three polynucleotide strands in the catalytic centre of DNA polymerases? Biochimie 91:11–12
  • Lestienne P, Pourquier P, Bonnet J. (2003). Elongation of oligonucleotide primers forming a triple helix on double-stranded DNA templates by purified DNA polymerases. Biochem Biophys Res Commun 311:380–5
  • Lestienne P, Pourquier P, Bonnet J. (2008). Initiation of DNA replication by a third parallel DNA strand bound in a triple-helix manner leads to strand invasion. Biochemistry 47:5689–98
  • Lestienne PP. (2011). Priming DNA replication from triple helix oligonucleotides: Possible threestranded DNA in DNA polymerases. Mol Biol Int 2011:562849
  • Mate AF, Vogler AP. (2002). Phylogeny of the Aphodiini (unpublished)
  • Michel CJ, Seligmann H. (2014). Bijective transformation circular codes and nucleotide exchanging RNA transcription. Biosystems 118:39–50
  • Nakamura A, Nemoto T, Heinemann IU, Yamashita K, Sonoda T, Komoda K, Tanaka I, et al. (2013). Structural basis of reverse nucleotide polymerization. Proc Natl Acad Sci USA 110:20970–5
  • Parra G, Bradnam K, Ning Z, Keane T, Korf I. (2009) Assessing the gene space in draft genomes. Nucleic Acids Res 37:289–97
  • Rissler LJ, Taylor DR. (2003). The phylogenetics of Desmognathine salamander populations across the Southern appalachians. Mol Phylogenet Evol 27:197–211
  • Rocher C, Dalibart R, Letellier T, Precigoux G, Lestienne P. (2001). Initiation of DNA replication by DNA polymerases from primers forming a triple helix. Nucleic Acids Res 29:3320–6
  • Rodin AS, Rodin SN. (2007). Translation of both complementary strands might govern early evolution of the genetic code. Silico Biol 7:309–18
  • Rodin SN, Ohno S. (1995). Two types of aminoacyl-tRNA synthetases could be originally encoded by complementary strands of the same nucleic acid. Orig Life Evol Biosph 25:565–89
  • Rodin SN, Rodin AS. (2006a). Origin of the genetic code: First aminoacyl-tRNA synthetases could replace isofunctional ribozymes when only the second base of codons was established. DNA Cell Biol 25:365–75
  • Rodin SN, Rodin AS. (2006b). Partitioning of aminoacyl-tRNA synthetases in two classes could have been encoded in a strand-symmetric RNA world. DNA Cell Biol 25:617–26
  • Rodin SN, Rodin AS. (2008). On the origin of the genetic code: Signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100:341–55
  • Rodin SN, Rodin AS, Carter CW Jr. (2009). On primordial sense-antisense coding. J Mol Evol 69:555–67
  • Root-Bernstein M, Root-Bernstein R. (2015). The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–58
  • Salzberg SL, Dunning Hotopp JC, Delcher AL, Pop M, Smith DR, Eisen MB, Nelson WC. (2005a). Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6:R23
  • Salzberg SL, Dunning Hotopp JC, Delcher AL, Pop M, Smith DR, Eisen MB, Nelson WC. (2005b). Correction: Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6:402
  • Samuels DC. (2004). Mitochondrial DNA repeats constrain the life span of mammals. Trends Genet 20:226–9
  • Samuels DC, Schon EA, Chinerry PF. (2004). Two direct repeats cause most human mtDNA deletions. Trends Genet 20:393–8
  • Seligmann H. (2011). Two genetic codes, one genome: Frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems 105:271–85
  • Seligmann H. (2012a). Overlapping genes coded in the 3′-to-5′-direction in mitochondrial genes and 3′-to-5′ polymerization of non-complementary RNA by and ‘invertase’. J Theor Biol 315:35–52
  • Seligmann H. (2012b). An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: Antisense antitermination tRNAs UAR insert serine. J Theor Biol 298:51–76
  • Seligmann H. (2012c). Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as a special case. Comp Biol Chem 41:18–34
  • Seligmann H. (2012d). Putative mitochondrial polypeptides coded by expanded quadruplet codons decoded by antisense tRNAs with unusual anticodons. Biosystems 110:84–106
  • Seligmann H. (2013a). Polymerization of non-complementary RNA: Systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes. Biosystems 111:156–74
  • Seligmann H. (2013b). Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes. J Theor Biol 324:1–20
  • Seligmann H. (2013c). Triplex DNA: RNA, 3′-to-5′ inverted RNA and protein coding in mitochondrial genomes. J Comp Biol 20:1–12
  • Seligmann H. (2014a). Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts. Biosystems 125C:22–31
  • Seligmann H. (2014b). Species radiation by DNA replication that systematically exchanges nucleotides? J Theor Biol 3C:216–222
  • Seligmann H, Labra A. (2013). Tetracoding increases with body temperature in Lepidosauria. Biosystems 447:155–63
  • Shen X, Wang H, Wang M, Liu B. (2011). The complete mitochondrial genome sequence of Euphausia pacifica (Malacostraca: Euphausiacea) reveals a novel gene order and unusual tandem repeats. Genome 54:911–22
  • Stewart JB, Beckenbach AT. (2006). Insect mitochondrial genomics 2: The complete mitochondrial genome sequence of a giant stonefly, Pteronarcys princeps, asymmetric directional mutation bias, and conserved plecopteran A+T-region elements. Genome 49:819–24
  • Uhlenbusch I, LcCracken A, Gellissen G. (1987). The gene for the large (16S) ribosomal RNA from Locusta migratoria mitochondrial genome. Curr Genet 11:631–8
  • Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS, Prolla TA, Loeb LA. (2008). DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40:392–4
  • Wang K, Wang Y, Yang D. (2014). The complete mitochondrial genome of the stonefly species, Togoperla sp. (Plecoptera: Perlidae). Mitochondrial DNA. In press
  • Williams TA, Wolfe KH, Fares MA. (2009). No rosetta stone for a sense-antisense origin of aminoacyl tRNA synthetase classes. Mol Biol Evol 26:445–50
  • Yang J-N, Seluanov A, Gorbunova V. (2013a). Mitochondrial inverted repeats strongly correlate with lifespan: mtDNA inversions and aging. PLoS One 8:e73318
  • Yang W, Wu J, Bi A, Ou-yang Y, Shen H, Chim G, Zhou J, et al. (2013b). Possible formation of mitochondrial-RNA containing chimeric or trimeric RNA implies a post-transcriptional and post-splicing mechanism for RNA fusion. PLoS One 8:e77016
  • Yu-Han Q, Hai-Yan W, Xiao-Yu J, Wei-Wei Y, Yu-Zhou D. (2014). Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae) and phylogenetic position of plecoptera based on mitogenomes. PLoS One 9:e86328

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.