571
Views
26
CrossRef citations to date
0
Altmetric
Original

Spinal cord injury – scientific challenges for the unknown future

, &
Pages 259-288 | Received 15 Jun 2007, Accepted 18 Jun 2007, Published online: 12 Jul 2009

References

  • Wilkins RH (1964) Neurosurgical classic — XVII Edwin Smith Surgical Papyrus. Neurosurgery March:
  • 40-244.Lifshutz J, Colohan A (2004). A brief history of therapy for traumatic spinal cord injury. Neuro-surg Focus 16(1): Article 5,1–8.
  • Lifshutz J, Colohan A (2004). A brief history of therapy for traumatic spinal cord injury. Neurosurg Focus16 (1): Article 5,1–8.
  • David S, Aguayo AJ (1981). Axonal elongation into peripheral nerves system "bridges" after centralnervous system injury in adult rats. Science 214: 931–933.
  • Baptiste DC, Fehlings MG (2006). Pharmacological approaches to repair the injured spinal cord. J Neu-rotrauma 23: 318–334.
  • Bracken MB, Shepard MJ, Collins VVF, Holford TR, Baskin DS, Eisenberg BM, Flamm E, Leo-Sum-mers L, Maroon JC, Marshall LF (1992). Methylprednisolone or naloxone treatment after acute spinal cord injury: lyear follow-up data. Results from the second National Acute Spinal Cord Injury Study. J Neurosurg 76:23–31.
  • Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL,Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Wmn HR, Young W (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of of acute spinal cord injury. Results of the Third Na-tional Acute Spinal Cord Injury Randomized Controlled Study. JAMA 277: 1597–1604.
  • Geisler FH, Coleman WP, Grieco G, Poonian D: Sygen Study Group (2001). The Sygen multicenteracute spinal cord injury study. Spine 26(24 Suppl): 5 87–98.
  • Api1770 ML (editor) (2002). Pharmacological therapy after spinal cord injury. Neurosurgery 50(3 Suppl): S 63–72.
  • Vaccaro AR, Daugherty RJ, Sheehan TP, Dante SJ, Cotter JM, Balderston RA, Herbison GJ, NorthrupBE (1997). Neurological outcome of early versus late surgery for cervical spinal cord injury. Spine Nov 22: 2609–2613.
  • Schmitt AB, Breuer S, Liman J, Buss A, Schlangen C, Pech K, Hol EM, Brook GA, Noth J, Schwaiger FW (2003). Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat BMC Neurosci 19: 4: 8.
  • Zhou FQ, Snider WD (2006). Intracellular control of developmental and regenerative axon growth. Phi-los Trans R Soc Lond B Biol Sci 361:1575–92.
  • Schwab ME (2004). Nogo and axon regeneration. Curl- Opin Neurobiol 14: 118–24.
  • Yiu G, He 5(2006). Glial inhibition of CNS axon regeneration. Nature Rev Neurosci 7:617–627.
  • Fawcett JW (2006). The glial response to injury and its role in the inhibition of CNS repair. Adv Exp Med Biol 557: 11–24.
  • Kirstein M, Farinas 1(2002). Sensing life: regulation of sensory neuron survival by neurotrophins. CellMol Life Sci 59: 1787–802.
  • Gillespie LN (2003). Regulation of axonal growth and guidance by the neurotrophin family of neuro-trophic factors. Chin Exp Pharmacol Physiol 30: 724–33.
  • Plunet W, Kwon BK, Tetzlaff W (2002). Promoting axonal regeneration in the central nervous system byenhancing the cell body response to axotomy. J Neurosci Res 68: 1–6.
  • Snider WD, Zhou FQ, Zhong J, Markus A (2002). Signaling the pathway to regeneration. Neuron 35:13–6.
  • Iannotti C, Ping Zhang Y, Shields CB, Han Y, Burke DA, Xu XM (2004). A neuroprotective role of glialcell line-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol 189: 317–32.
  • Lu P, Yang H, Jones LL, Filbin MT, Tuszynslci MH (2004). Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24:6402–9.
  • Pezet S, McMahon SB (2006). Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci29: 507–38.
  • Novikova LN, Novikov LN, Kellerth JO (2002). Differential effects of neurotrophins on neuronal sur-vival and axonal regeneration after spinal cord injury in adult rats. J Comp Neurol 452:255–63.
  • Blits B, Bunge MB (2006). Direct gene therapy for repair of the spinal cord. J Neurotrauma 23: 508–20.
  • Fournier AE, GrandPre T, Strittmatter SM (2001). Identification of a receptor mediating Nogo-66 inhibi- tion of axonal regeneration. Nature 409: 341–6.
  • Yamashita T, Fujitani M, Yamagishi S, Hata K, Mimura F (2005). Multiple signals regulate axon regen-eration through the nogo receptor complex. Mol Neurobiol 32: 105–11.
  • Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal anti-body IN-1. Nature 403:434–9.
  • Li S, Liu BP, Budel S, Li M, Ji B, Walus L, Li W, Jirik A, Rabacchi S, Choi E, Worley D, Sah DW, Pepin-sky B, Lee D, Relton J, Strittmatter SM (2004). Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 24: 10511–20.
  • Xu G, Nie DY, Chen JT, Wang CY, Yu FG, Sun L, Luo XG, Ahmed S, David S, Xiao ZC (2004). Recom-binant DNA vaccine encoding multiple domains related to inhibition of neurite outgrowth: a potential strategy for axonal regeneration. J Neurochem 91: 1018–23.
  • Huang DW, McKerracher L, Braun PE, David S. (1999). A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24: 639–47.
  • Jones TB, Ankeny DP, Guan Z, McGaughy V, Fisher LC, Basso DM, Popovich PG (2004). Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropa-thology after spinal cord injury in rats. J Neurosci 24: 3752–61.
  • Ankeny DP, Popovich PG (2007). Central nervous system and non-central nervous system antigen vac-cines exacerbate neuropathology caused by nerve injury. Eur J Neurosci 25:2053–64.
  • Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002). Spinal axon regenerationinduced by elevation of cyclic AMP. Neuron 34: 895–903.
  • Pearse DD, Pereira FC, Marcia) AE, Bates ML, Berrocal YA, Filbin MT, Bunge MB (2004). cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 10: 610–6.
  • Hayes KC (2004). The use of 4-aminopyridine (fampridine) in demyelinating disorders. CNS Drug Rev10:295–316.
  • Cardenas DD, Ditunno J, Graziani V, Jackson AB, Lammertse D, Potter P, Sipski M, Cohen R, Blight AR (2007). Phase 2 trial of sustained-release fampridine in chronic spinal cord injury. Spinal Cord 45: 158–68.
  • Rice T, Larsen J, Rivest S, Yong VW (2007). Characterisation of early inflammation after spinal cord injury in mice. J Neuropathol Exp Neurol 66: 184–195
  • Andersson AJ (2002). Mechanism and pathways of inflammatory responces in CNS trauma: spinal cord injury. J Spinal Cord Med 25: 70–79.
  • Flemming JC, Norenberg MI), Ramsay DA Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006). The cellular inflammatory response in human spinal cords after injury. Brain 129: 3249–3269.
  • Chang HT (2007). Subacute human spinal cord contusion:few lymfocytes and many macrophages. Spi-nal Cord 45: 174–182.
  • Kubasak MD, Hedlund E, Roy RR (2005). Li CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates. Exp Neurol 194: 363–375.
  • Isaksson J, Farooque M Holtz A (1999). Expression of ICAM-1 and CD 11 b after experimental spinalcord injury in rats. J Neurotrauma 16:165–173.
  • Zhang Y, Roslan R, Lang D (2000). Expression of CHL1 and Li by neurons and glia following sciatic nerve and dorsal root injury. Moll Cell Neuroscience 16:71–86.
  • Mabon PJ, Weaver LC, Dekaban GA (2000). Inhibition of monocyt/macrophage migration to a spinal cord injury site by an antibody to the integrin alphaD: a potential new-anti-inflammatory treatment. Exp Neurol 166: 52–64.
  • Brewer KL, Bethea JR, Yezierslci RP (1999). Neuroprotective effects of Interleulcin-10 following excito-toxic spinal cord injury. Exp Neurol 159: 484–493.
  • Segal JL (2005). Immunoactivation and altered intercellular communication mediate the pathophysiol-ogy of spinal cord injury. Pharmacotherapy 25: 145–56.
  • Busch SA, Silver J (2002). The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol17: 120–127.
  • Bradbury EB, Moon LD, Popat RJ (2002). Chondroitinease ABC promotes functional recovery after spinal cord injury. Nature 416:636–640.
  • Sonmez A, Kabakci B, Vardar E (2007). Erythropoetin attenuates neuronal injury and potentiate the expression of pCREB in anterior horn after transient spinal cord ischemia in rats. Surg Neurol Mar 16 (Epub ahead of print).
  • McKerracher L, Higuchi H (2006). Targeting RHO to timulate repair after spinal cord injury. J Neu-rotrauma 23: 309–317.
  • Dergham P, Ellezam B, Essagian C (2002). Rho signaling pathway targeted to promote spinal cord re-pair. J Neurosci 22: 6570–6577.
  • Schwartz M, Voles E (2006). Immuno-based therapy for spinal cord repair: autologous macrophages andbeyond. J Neurotrauma 23: 360–370.
  • Knoller N, Auerbach G, Fulga V (2005). Clinical experience using incubated autologous macrophages as a treatment for complete cervical spinal cord injury: phase I study results. J Neurosurg Spine 3: 173–181.
  • Olsson L, Cheng H, Zetterstrom RH, Solomin L, Jansson L, Gimenez-Llort L, Hoffer BJ, Perlmann T (1998). On CNS repair and protection strategies: novel approaches with implications for spinal cord injury and Parkinson's disease. Brain Res Rev 26:302–5.
  • Xu XM, Chen A, Guenard V, Kleitman N, Bunge MB (1997). Bridging Schwann cell transplants pro-mote regeneration from both the rostral and caudal stumps of transected adult spinal cord. J Neurocytol 26: 1–16.
  • Barnett SC, Riddle JS (2004). Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat 204: 57–67.
  • Ramon-Cueto A, Santos-Benito FF (2001). Cell therapy to repair injuried spinal cord:olfactory ensheat-ing glia transplantation. Restor Neurol Neurosci 19: 149–56.
  • Barnett SC, Riddle JS (2007). Olfactory ensheathing cell transplantation as a strategy for spinal cord repair--what can it achieve? Nat Clin Pract Neurol 3:152–61.
  • Murrell W, Féron F, Wetzig A, Cameron N, Splatt K, Bellette B, Bianco J, perry C, Lee G, Mackay-Sim A (2005). Multipotent stem cells from adult olfactory mucosa. Dev Dyn 233:496–515
  • Feron F, Perry C, Cochrane J, Licina P, Urquhart S, geraghty T, Mackay-Sim A (2005). Autologous olfac-tory ensheating cell transplantation in human spinal cord injury. Brain 128:2951–60.
  • Nomura H, Tator CH, Shoichet MS (2006). Bioengineered strategies for spinal cord repair. J Neuro-trauma 23:496–507.
  • Rochlcind S, Shahar A, Fliss D, El-Ani D, Astachov L, Hayon T, Alon M, Zamostiano R, Ayalon 0, Biton LE, Cohen Y, Halperin R, Schneider D, Oron A, Nevo Z (2006). Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats. Eur Spine J 15: 234–45.
  • Murray M (2004). Cellular trasnsplants:steps toward restoration of function in spinal injuried animals.Prog Brain Res 143:133–46.
  • Akesson E, Kjaeldgaard A, Seiger A (1998). Human embryonic spinal cord graft in adult rat spinal cordcavities;survival, growth, and interactions with the host Exp Neurol 149:262–76.
  • Akesson E, Holmberg L, Jonhagen ME, Kjaeldgaard A, Falci S, Sundstrom E, Seiger A (2001). Solid human embryonic spinal cord xenografts in acute and chronic spinal cordcavities: a morphological and functional study. Exp Neurol 170:305–16.
  • Falci S, Holtz A, Akesson E, Ertzgaard P, Hutting C, Kjaeldgaard A, Levi R, Ringden 0, Westgren M,Lammertse D, Seiger A (1997). Obliteration of posttraumatic spinal cord cyst with solid human embry-onic spinal cord grafts; first clinical attempt. J Neurotrauma 14: 875–84.
  • Thompson FJ, Reier PJ, Uthman B, Mott S, Fessler RG, Behnnan A, Trimble M, Anderson DK, WirthED 3rd (2001). Neurophysiological assessment of the feasibility and safety of neural tissue transplanta-tion in patients with syringomyelia. J Neurotrauma 18: 931–45.
  • Wirth ED 3, Reier PJ, Fessler RG, Thompson FJ, Uthman B, Behmlan A, Beard J, Vierck CJ, Ander-son DK (2001). Feasability and safety of neural tissue transplantation in patients with syringomyelia. J Neurotrauma 18: 911–29.
  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells.Neuron 13: 1071–82.
  • McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999). Trans-planted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5: 1410–2.
  • Thuret S, Moon LDF, Gage FH (2006). Therapeutic interventions after spinal cord injury. Nature Rev Neurosci 7: 628–643.
  • Pfeiffer K, Vroemen M, Caioni M, Aigner L, Bogdahn U, Weidner N (2006). Autologous adult rodentneural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen Med 1:255–266.
  • Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nature Rev Neurosci 7: 395–406.
  • Björklund LM, Sanchez-Permute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson 0 (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99: 2344–9.
  • Riess P, Molcanyi M, Bentz K, Maegele M, Simanski C, Carlitscheck C, Schneider A, Hescheler J, Bouillon B, Schafer U, Neugebauer E (2007). Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neuro-trauma 24:216–25.
  • Bradbury EJ, McMahon SB (2006) Spinal cord repair strategies: why to they work? Nature Rev Neuro-sci 7: 6/111 653.
  • McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999). Trans-planted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5: 1410–2.
  • McDonald JW, Becker D, Holekamp TF, Howard M, Liu S, Lu A, Lu J, Platik MM, Qu Y, Stewart T, Vadivelu S(2004). Repair of the injured spinal cord and the potential of embryonic stem cell transplanta-tion. J Neurotrauma 21: 383–93.
  • McDonald JW, Belegu V (2006). Demyelination and remyelination after spinal cord injury. J Neuro-trauma 23:345–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.