622
Views
43
CrossRef citations to date
0
Altmetric
Clinical Trials

NP001 regulation of macrophage activation markers in ALS: A phase I clinical and biomarker study

, , , , , , , & show all
Pages 601-609 | Received 15 Apr 2014, Accepted 01 Aug 2014, Published online: 05 Sep 2014

References

  • McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle & Nerve. 2002;26: 459–70.
  • Barbeito AG, Mesci P, Boillee S. Motor neuron-immune interactions: the vicious circle of ALS. J Neural Transm. 2010;117:981–1000.
  • McCombe PA, Henderson RD. The role of immune and inflammatory mechanisms in ALS. Current Molecular Medicine. 2011;11:246–54.
  • Phani S, Re DB, Przedborski S. The Role of the Innate Immune System in ALS. Frontiers in Pharmacology. 2012;3:150.
  • Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2007:CD001447.
  • Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci. 2007;10:1355–60.
  • Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4 + T-cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A. 2008;105:15558–63.
  • Xiao Q, Zhao W, Beers DR, Yen AA, Xie W, Henkel JS, et al. Mutant SOD1-G93A microglia are more neurotoxic relative to wild-type microglia. Journal of Neurochemistry. 2007;102:2008–19.
  • Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, et al. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PloS One. 2008;3:e2740.
  • Valente T, Mancera P, Tusell JM, Serratosa J, Saura J.C/EBPbeta expression in activated microglia in amyotrophic lateral sclerosis. Neurobiology of Aging. 2012;33:2186–99.
  • Akizuki M, Yamashita H, Uemura K, Maruyama H, Kawakami H, Ito H, et al. Optineurin suppression causes neuronal cell death via NF-kappaB pathway. Journal of Neurochemistry. 2013;126:699–704.
  • Fujita K, Izumi Y, Kaji R. Inflammatory mechanisms in amyotrophic lateral sclerosis. Brain and Nerve (Shinkei kenkyu no shinpo). 2012;64:273–8.
  • Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Annals of Neurology. 2004;55:221–35.
  • Boillee S, Van de Velde C, Cleveland DW. ALS: a disease of motor neurons and their non-neuronal neighbors. Neuron. 2006;52:39–59.
  • Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol. 2009;4:389–98.
  • Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. The Journal of Clinical Investigation. 2012;122: 3063–87.
  • Keizman D, Rogowski O, Berliner S, Ish-Shalom M, Maimon N, Nefussy B, et al. Low-grade systemic inflammation in patients with amyotrophic lateral sclerosis. Acta Neurologica Scandinavica. 2009;119:383–9.
  • Fiala M, Mizwicki MT, Weitzman R, Magpantay L, Nishimoto N. Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients. American Journal of Neurodegenerative Disease. 2013;2:129–39.
  • Mizwicki MT, Fiala M, Magpantay L, Aziz N, Sayre J, Liu G, et al. Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. American Journal of Neurodegenerative Disease. 2012;1: 305–15.
  • Baron P, Bussini S, Cardin V, Corbo M, Conti G, Galimberti D, et al. Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle & Nerve. 2005;32:541–4.
  • Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology. 2004; 62:1758–65.
  • Wilms H, Sievers J, Dengler R, Bufler J, Deuschl G, Lucius R. Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol. 2003;144:139–42.
  • Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J, Lancero M, et al. MCP-1 chemokine receptor CCR2 is decreased on circulating monocytes in sporadic amyotrophic lateral sclerosis (SALS). J Neuroimmunol. 2006;179:87–93.
  • Ono S, Hu J, Shimizu N, Imai T, Nakagawa H. Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. Journal of the Neurological Sciences. 2001;187: 27–34.
  • Sekizawa T, Openshaw H, Ohbo K, Sugamura K, Itoyama Y, Niland JC. Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. Journal of the Neurological Sciences. 1998;154:194–9.
  • Babu GN, Kumar A, Chandra R, Puri SK, Kalita J, Misra UK. Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem Res. 2008;33:1145–9.
  • Cereda C, Baiocchi C, Bongioanni P, Cova E, Guareschi S, Metelli MR, et al. TNF and sTNFR1/2 plasma levels in ALS patients. J Neuroimmunol. 2008;194:123–31.
  • Poloni M, Facchetti D, Mai R, Micheli A, Agnoletti L, Francolini G, et al. Circulating levels of tumor necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci Lett. 2000;287:211–4.
  • Turner MR, Kiernan MC, Leigh PN, Talbot K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurology. 2009; 8:94–109.
  • Zhang R, Hadlock KG, Do H, Yu S, Honrada R, Champion S, et al. Gene expression profiling in peripheral blood mononuclear cells from patients with sporadic amyotrophic lateral sclerosis (SALS). J Neuroimmunol. 2011; 230:114–23.
  • Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J, Hadlock K, et al. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (SALS). J Neuroimmunol. 2005;159:215–24.
  • Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (SALS). J Neuroimmunol. 2009;206:121–4.
  • Lincecum JM, Vieira FG, Wang MZ, Thompson K, de Zutter GS, Kidd J, et al. From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis. Nat Genet. 2010;42: 392–9.
  • McGrath MS, Kahn JO, Herndier BG. Development of WF10, a novel macrophage-regulating agent. Curr Opin Investig Drugs. 2002;3:365–73.
  • Joo K, Lee Y, Choi D, Han J, Hong S, Kim YM, et al. An anti-inflammatory mechanism of taurine conjugated 5-aminosalicylic acid against experimental colitis: taurine chloramine potentiates inhibitory effect of 5-aminosalicylic acid on IL-1beta-mediated NFkappaB activation. European Journal of Pharmacology. 2009;618:91–7.
  • Giese T, McGrath MS, Stumm S, Schempp H, Elstner E, Meuer SC. Differential effects on innate versus adaptive immune responses by WF10. Cellular Immunology. 2004;229:149–58.
  • McGrath MS, Miller RG, editors. Development of macrophage activation regulator NP001 for ALS. Proceedings of the 21st International Symposium on ALS/MND, Clinical Work in Progress; 2010 Dec 11–13; Orlando, USA.
  • Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord.: official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases. 2000;1:293–9.
  • Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). Journal of the Neurological Sciences. 1999;169:13–21.
  • Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14 + CD16+ DR++ monocytes are a major source of TNF. J Immunol. 2002;168:3536–42.
  • Scherberich JE, Nockher WA. CD14++ monocytes, CD14+/CD16 + subset and soluble CD14 as biological markers of inflammatory systemic diseases and monitoring immunosuppressive therapy. Clin Chem Lab Med. 1999; 37:209–13.
  • Ziegler-Heitbrock L. The CD14 + CD16+ blood monocytes: their role in infection and inflammation. Journal of Leukocyte Biology. 2007;81:584–92.
  • Merino A, Buendia P, Martin-Malo A, Aljama P, Ramirez R, Carracedo J. Senescent CD14 + CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity. J Immunol. 2011;186:1809–15.
  • Sadeghi HM, Schnelle JF, Thoma JK, Nishanian P, Fahey JL. Phenotypic and functional characteristics of circulating monocytes of elderly persons. Experimental Gerontology. 1999;34:959–70.
  • Takeyama N, Yabuki T, Kumagai T, Takagi S, Takamoto S, Noguchi H. Selective expansion of the CD14(+)/CD16(bright) subpopulation of circulating monocytes in patients with hemophagocytic syndrome. Annals of Hematology. 2007;86:787–92.
  • Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14lowCD16high: a cytokine- producing monocyte subset which expands during human immunodeficiency virus infection. European Journal of Immunology. 1995;25:3418–24.
  • Ancuta P, Wang J, Gabuzda D. CD16 + monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells. Journal of Leukocyte Biology. 2006;80:1156–64.
  • Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Regulier EG, et al. CNS invasion by CD14+/CD16 + peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. Journal of Neurovirology. 2001;7:528–41.
  • Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349:692–5.
  • Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer’s disease, and multiple sclerosis. Journal of the Neurological Sciences. 2002;202: 13–23.
  • Ancuta P, Moses A, Gabuzda D. Transendothelial migration of CD16 + monocytes in response to fractalkine under constitutive and inflammatory conditions. Immunobiology. 2004;209:11–20.
  • Williams DW, Eugenin EA, Calderon TM, Berman JW. Monocyte maturation, HIV susceptibility, and transmigration across the blood-brain barrier are critical in HIV neuropathogenesis. Journal of Leukocyte Biology. 2012; 91:401–15.
  • Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M, et al. On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxidants & Redox Signaling. 2006;8:2075–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.