4,453
Views
68
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug

, , , &
Pages 672-679 | Received 14 Sep 2014, Accepted 16 Oct 2014, Published online: 19 Nov 2014

References

  • Akhtar MJ, Ahamed M, Kumar S, Khan MMA, Ahmad J, Alrokayan SA. 2012. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine. 7:845–857.
  • Bender EA, Adorne MD, Colomé LM, Abdalla DSP, Guterres SS, Pohlmann AR. 2012. Hemocompatibility of poly(ϵ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm. 426:271–279.
  • Davis ME, Chen ZG, Shin DM. 2008. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 7:771–782.
  • Deerinck TJ. 2008. The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Pathol. 36:112–116.
  • Degen A, Kosec M. 2000. Effect of pH and impurities on the surface charge of zinc oxide in aqueous Solution. J Eur Ceramic Soc. 20:667–673.
  • Elbialy NS, Fathy MM, Khalil WM. 2014. Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers. Phys Med. 30:843–848.
  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. 2011. Silver nanoparticles as potential antiviral agents. Molecules. 16:8894–918.
  • Gilmore JL, Yi X, Quan L, Kabanov AV. 2008. Novel nanomaterials for clinical neuroscienceNovel Nanomaterials for Clinical Neuroscience. J Neuroimmune Pharmacol. 3:83–94.
  • Guo D, Wua C, Jiang H, Li Q, Wanga X, Chen B. 2008. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B. 93:119–126.
  • Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, et al. 2008. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 19:295103.
  • He F, Zhao D. 2005. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol. 39:3314–3320.
  • Hong H, Shi J, Yang Y, Zhang Y, Engle JW, Nickles RJ, et al. 2011. Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett. 11:3744–3750.
  • Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR, et al. 2011. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release. 152:76–83.
  • Kim K, Lee M, Park H, Kim JH, Kim S, Chung H, et al. 2006. Cell- permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc. 128:3490–3491.
  • Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M. 2006. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small. 2:785–792.
  • Lai JR, Chang YW, Yen HC, Yuan NY, Liao MY, Hsu CY, et al. 2010. Multifunctional doxorubicin/superparamagnetic iron oxide- encapsulated Pluronic F127 micelles used for chemotherapy/magnetic resonance imaging. J Appl Phys. 107:09B318.
  • Lee JH, Kim YG, Cho MH, Lee J. 2014. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res. 169:888–896.
  • Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, et al. 2010. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 31:4995–5006.
  • Montet X, Weissleder R, Josephson L. 2006. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem. 17:905–911.
  • Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, et al. 2005. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 11:3530–3534.
  • Nair S, Sasidharan A, Rani VVD, Menon D, Nair S, Manzoor K, Raina S. 2009. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci. 20:S235–S241
  • Nam J, La WG, Hwang S, Ha YS, Park N, Won N, et al. 2013. pH- responsive assembly of gold nanoparticles and “spatiotemporally concerted” drug release for synergistic cancer therapy. ACS Nano. 7:3388–3402.
  • Nasrolahi Shirazi A, Tiwari RK, Oh D, Sullivan B, McCaffrey K, Mandal D, Parang K. 2013. Surface decorated gold nanoparticles by linear and cyclic peptides as molecular transporters. Mol Pharm. 10:3137–3151.
  • Nobili S, Landini I, Giglioni B, Mini E. 2006. Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets. 7:861–879.
  • Palanikumar L, Ramasamy S, Hariharan G, Balachandran C. 2013. Influence of particle size of nano zinc oxide on the controlled delivery of Amoxicillin. Applied Nanoscience. 3:441–451.
  • Palanikumar L, Ramasamy SN, Balachandran C. 2014. Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol. 8:111–117.
  • Panariti A, Miserocchi G, Rivolta I. 2012. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl. 5:87–100.
  • Ramanujan RV, Kayal S. 2010. Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe@Au) for magnetic drug targeting. J NanosCNanotechnol. 10:1–13.
  • Reddy LS, Nisha MM, Joice M, Shilpa PN. 2014. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol. 52:1388–1397.
  • Seker S, Eser Elçin A, Yumak T, Sınağ A, Murat Elçin Y. 2014. In Vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells. Toxicol In Vitro. 28:1349–1358.
  • Son SJ, Bai X, Lee SB. 2007. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Dru.g/gene delivery applications. Drug Discov Today 12:650–656.
  • Sun C, Fang C, Stephen Z, Veiseh O, Hansen S, Lee D, et al. 2008. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine. 3:495–505.
  • Sun TM, Wang YC, Wang F, Du JZ, Mao CQ, Sun CY, et al. 2014. Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials. 35:836–845.
  • Taccola L, Raffa V, Riggio C, Vittorio O, Iorio MC, Vanacore R, et al. 2011. Zinc oxide nanoparticles as selective killers of proliferating cells. Int J Nanomedicine. 6:1129–1140.
  • Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, et al. 2010. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials. 31:8032–8042.
  • Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S. 2014. Green synthesized doxorubicin loaded zinc oxide nanoparticlesregulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem. 49 (1)::160–172.
  • Wang H, Wingett D, Engelhard MH, Feris K, Reddy KM, Turner P, et al. 2009. Fluorescent dye encapsulated ZnO particles with cell specific toxicity for potential use in biomedical applications. J Mater Sci Mater Med. 20:11–22.
  • Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, et al. 2012. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics. 2:757–768.
  • Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N. 2006. Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci. 29:641–645.
  • Zhang Y, Wei C, Wang S, Liu Y, Pope C. 2008. Phototoxicity of zinc oxide nanoparticle conjugatesin human ovarian cancer NIH: OVCAR-3 cells. J Biomed Nanotechnol. 4:432–438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.