908
Views
5
CrossRef citations to date
0
Altmetric
REVIEW

Recent prospective of surface engineered Nanoparticles in the management of Neurodegenerative disorders

, , , , &
Pages 780-791 | Received 23 Jan 2015, Accepted 10 Mar 2015, Published online: 24 Jun 2015

References

  • Agyare EK, Curran GL, Ramakrishnan M, Caroline CY, Poduslo JF, Kandimalla KK. 2008. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer's disease and cerebral amyloid angiopathy. Pharm Res. 25:2674–2684.
  • Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, et al. 2005. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem. 16:1503–1511.
  • Amano S, Ohashi M, Kirihara M, Yang XH, Hazama F. 1994. α-Tocopherol protects against radical-induced injury in cultured neurons. Neurosci Lett. 170:55–58.
  • Banks WA, Kastin AJ. 1990. Peptide transport systems for opiates across the blood-brain barrier. Am J Physiol Endocrinol Metab. 259:E1–E10.
  • Barbu E, Molnàr É, Tsibouklis J, Górecki DC. 2009. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv. 6:553–565.
  • Batrakova EV, Li S, Vinogradov SV, Alakhov VY, Miller DW, Kabanov AV. 2001. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. J Pharmacol Exp Ther 299: 483–493.
  • Begley DJ. 2004. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 104: 29–45.
  • Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, et al. 2005. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA. 102:11539–11544.
  • Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, et al. 2010. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 7:3.
  • Blanchette M, Fortin D. 2011Blood-brain barrier disruption in the treatment of brain tumors. In: The Blood-Brain and Other Neural Barriers New York: Springer, pp. 447–463.
  • Bodor N, Buchwald P. 1999. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv Drug Deliv Rev. 36:229–254.
  • Borlongan C, Emerich D. 2003. Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull. 60:297–306.
  • Brambilla D, Souguir H, Nicolas J, Mackiewicz N, Verpillot R, Le Droumaguet B, et al. 2011. Colloidal properties of biodegradable nanoparticles influence interaction with amyloid-β peptide. J Biotechnol. 156:338–340.
  • Brightman MW. 1977. Morphology of blood-brain interfaces. Exp Eye Res. 25:1–25.
  • Chauhan NB. 2002. Trafficking of intracerebroventricularly injected antisense oligonucleotides in the mouse brain. Antisense Nucleic Acid Drug Dev. 12:353–357.
  • Chou KJ, Donovan MD. 1998. Lidocaine distribution into the CNS following nasal and arterial delivery: a comparison of local sampling and microdialysis techniques. Int J Pharm. 171:53–61.
  • Cicchetti F, Drouin-Ouellet J, Gross RE. 2009. Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 30:475–483.
  • Cosco D, Paolino D, Muzzalupo R, Celia C, Citraro R, Caponio D, et al. 2009. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed Microdevices. 11:1115–1125.
  • Czeisler BM, Janigro D. 2006. Reading and writing the blood-brain barrier: relevance to therapeutics. Recent Pat CNS Drug Discov. 1:157–173.
  • De Boer A, Gaillard P. 2007. Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 47:323–355.
  • Demeule M, Poirier J, Jodoin J, Bertrand Y, Desrosiers RR, Dagenais C, et al. 2002. High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J Neurochem. 83:924–933.
  • Douglas SJ, Davis SS, Illum L. 1986. Biodistribution of poly (butyl 2-cyanoacrylate) nanoparticles in rabbits. Int J Pharm. 34:145–152.
  • Erdlenbruch B, Alipour M, Fricker G, Miller DS, Kugler W, Eibl H, Lakomek M. 2003. Alkylglycerol opening of the blood–brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol. 140:1201–1210.
  • Ferrante R, Kowall N, Beal M, Richardson E, Bird E, Martin J. 1985. Selective sparing of a class of striatal neurons in Huntington's disease. Science. 230:561–563.
  • Friese A, Seiller E, Quack G, Lorenz B, Kreuter J. 2000. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly (butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm. 49: 103–109.
  • Furumoto K, Nagayama S, Ogawara K, Takakura Y, Hashida M, Higaki K, Kimura T. 2004. Hepatic uptake of negatively charged particles in rats: possible involvement of serum proteins in recognition by scavenger receptor. J Control Release. 97:133–141.
  • Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S. 2006. Lectin-conjugated PEG–PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 27:3482–3490.
  • Gil-Mohapel J, Simpson JM, Ghilan M, Christie BR. 2011. Neurogenesis in Huntington's disease: can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res. 1406:84–105.
  • Godinho BM, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. 2013. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington's disease. Mol Pharm. 10:640–649.
  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. 1994. Biodegradable long-circulating polymeric nanospheres. Science. 263:1600–1603.
  • Harmon BT, Aly AE, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL. 2014. Intranasal administration of plasmid DNA nanoparticles yields successful transfection and expression of a reporter protein in rat brain. Gene Ther. 21:514–521.
  • Hebert LE, Beckett LA, Scherr PA, Evans DA. 2001. Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Dis Assoc Disord. 15:169–173.
  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. 2003. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 60:1119–1122.
  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. 1998. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci. 95:4607–4612.
  • Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. 2011. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson's disease. Int J Phar. 415:273–283.
  • Huang R, Ke W, Liu Y, Wu D, Feng L, Jiang C, Pei Y. 2010. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci. 290:123–130.
  • Huang R, Ma H, Guo Y, Liu S, Kuang Y, Shao K, et al. 2013. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson's disease. Pharma Res. 30:2549–2559.
  • Huong NT, Giang LTK, Binh NT. 2009. Surface modification of iron oxide nanoparticles and their conjuntion with water soluble polymers for biomedical application. J Phys. 012046.
  • Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N. 2006. Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg. 105:445–454.
  • Ilium L, Hunneyball I, Davis S. 1986. The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages. Int J Pharm. 29:53–65.
  • Immordino ML, Dosio F, Cattel L. 2006. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 1:297.
  • Jalali N, Moztarzadeh F, Mozafari M, Asgari S, Motevalian M, Alhosseini SN. 2011. Surface modification of poly (lactide-co-glycolide) nanoparticles by d-α-tocopheryl polyethylene glycol 1000 succinate as potential carrier for the delivery of drugs to the brain. Colloids Surf A Physicochem Eng Asp. 392:335–342.
  • Jaruszewski KM, Ramakrishnan S, Poduslo JF, Kandimalla KK. 2012. Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer's disease amyloid protein. Nanomedicine. 8:250–260.
  • Juillerat-Jeanneret L. 2008. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today. 13:1099–1106.
  • Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y. 2013. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials. 34:9220–9226.
  • Karanth H, Murthy RSR. 2008. Nanotechnology in brain targeting. Int J Pharm Sci Nanotechnol. 1:9–24.
  • Kim HR, Andrieux K, Gil S, Taverna M, Chacun H, Desmaële D, et al. 2007. Translocation of poly (ethylene glycol-co-hexadecyl) cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules. 8:793–799.
  • Kreuter J. 2004. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol. 4:484–488.
  • Kreuter J. 2001. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 47:65–81.
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. 1995. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674:171–174.
  • Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. 2007. Covalent attachment of apolipoprotein AI and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release. 118:54–58.
  • Lazar AN, Mourtas S, Youssef I, Parizot C, Dauphin A, Delatour B, et al. 2013. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: possible applications to Alzheimer disease. Nanomedicine. 9:712–721.
  • Leu D, Manthey B, Kreuter J, Speiser P, Deluca PP. 1984. Distribution and elimination of coated polymethyl [2‐14C] methacrylate nanoparticles after intravenous injection in rats. J Pharm Sci. 73:1433–1437.
  • Li J, Feng L, Fan L, Zha Y, Guo L, Zhang Q, et al. 2011. Targeting the brain with PEG–PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 32:4943–4950.
  • Licciardi M, Paolino D, Celia C, Giammona G, Cavallaro G, Fresta M. 2010. Folate-targeted supramolecular vesicular aggregates based on polyaspartyl-hydrazide copolymers for the selective delivery of antitumoral drugs. Biomaterials. 31:7340–7354.
  • Liu G, Men P, Harris PL, Rolston RK, Perry G, Smith MA. 2006. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 406:189–193.
  • Liu YY, Yang XY, Li Z, Liu ZL, Cheng D, Wang Y, et al. 2014. Characterization of polyethylene glycol‐polyethyleneimine as a vector for alpha‐synuclein siRNA delivery to PC12 cells for Parkinson's disease. CNS Neurosci Ther. 20:76–85.
  • Liu Z, Jiang M, Kang T, Miao D, Gu G, Song Q, et al. 2013. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials. 34:3870–3881.
  • Maccioni RB, Muñoz JP, Barbeito L. 2001. The molecular bases of Alzheimer's disease and other neurodegenerative disorders. Arch Med Res 32:367–381.
  • Malhotra M, Tomaro-Duchesneau C, Prakash S. 2013. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials. 34:1270–1280.
  • Mansur AA, Saliba JB, Mansur HS. 2013. Surface modified fluorescent quantum dots with neurotransmitter ligands for potential targeting of cell signaling applications. Colloids Surf B Biointerfaces. 111: 60–70.
  • Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, et al. 2006. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol ExpTher. 317:1246–1253.
  • Mittal G, Carswell H, Brett R, Currie S, Kumar M. 2011. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer's pathology. J Control Release. 150:220–228.
  • Moghimi SM, Hunter AC, Murray JC. 2001. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 53:283–318.
  • Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, van Vuuren S, et al. 2013. Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int J Pharm. 448:267–281.
  • Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, et al. (2008). Strategies to advance translational research into brain barriers. Lancet Neurol. 7:84–96.
  • Neuwelt EA. 1989Implications of the Blood-brain Barrier and Its Manipulation New York: Plenum Pub Corp.
  • Ogawara K, Furumoto K, Takakura Y, Hashida M, Higaki K, Kimura T. 2001. Surface hydrophobicity of particles is not necessarily the most important determinant in their in vivo disposition after intravenous administration in rats. J Control Release. 77:191–198.
  • Ohtsuki S, Terasaki T. 2007. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res. 24:1745–1758.
  • Olivier V, Meisen I, Meckelein B, Hirst TR, Peter-Katalinic J, Schmidt MA, Frey A. 2003. Influence of targeting ligand flexibility on receptor binding of particulate drug delivery systems. Bioconjug Chem. 14:1203–1208.
  • Paolino D, Cosco D, Racanicchi L, Trapasso E, Celia C, Iannone M, et al. 2010. Gemcitabine-loaded PEGylated unilamellar liposomes vs GEMZARZ Biodistribution, pharmacokinetic features and in vivo antitumor activity. J Control Release. 144:144–150.
  • Pardeshi CV, Belgamwar VS, Tekade AR, Surana SJ. 2013. Novel surface modified polymer–lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. J Mater Sci Mater Med. 24:2101–2115.
  • Pardridge WM. 1988. Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol. 28:25–39.
  • Pardridge WM. 2002. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov Today. 7:5–7.
  • Pardridge WM. 2006. Molecular Trojan horses for blood–brain barrier drug delivery. Curr opin Pharmacol. 6:494–500.
  • Pardridge WM. 2007. Blood–brain barrier delivery. Drug Discov Today. 12:54–61.
  • Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. 2009. Getting into the brain. CNS Drugs. 23:35–58.
  • Peracchia M, Fattal E, Desmaele D, Besnard M, Noel J, Gomis J, et al. 1999. Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release. 60:121–128.
  • Peracchia MT, Vauthier C, Desmaële D, Gulik A, Dedieu J-C, Demoy M, et al. 1998. Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Pharm Res. 15:550–556.
  • Petri B, Bootz A, Khalansky A, Hekmatara T, Müller R, Uhl R, et al. 2007. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly (butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release. 117:51–58.
  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science. 276:2045–2047.
  • Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, et al. 2012. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 33:7194–7205.
  • Rautioa J, Chikhale PJ. 2004. Drug delivery systems for brain tumor therapy. Curr Pharm Des. 10:1341–1353.
  • Rubinsztein DC. 2002. Lessons from animal models of Huntington's disease. Trends Genet. 18:202–209.
  • Smith QR. 1993Drug delivery to brain and the role of carrier-mediated transport In: Frontiers in Cerebral Vascular Biology. New York: Springer, pp. 83–93.
  • Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. 1997. α-synuclein in lewy bodies. Nature. 388:839–840.
  • Su Y, Sinko PJ. 2006. Drug delivery across the blood-brain barrier: why is it difficult? how to measure and improve it? Expert Opin Drug Deliv. 3:419–435.
  • Tamai I, Tsuji A. 2000. Transporter-mediated permeation of drugs across the blood–brain barrier. J Pharm Sci. 89:1371–1388.
  • Temsamani J, Scherrmann JM, Rees AR, Kaczorek M. 2000. Brain drug delivery technologies: novel approaches for transporting therapeutics. Pharm Sci Technolo Today. 3:155–162.
  • Torchilin V. 1998. Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul. 15:1–19.
  • Tröster S, Kreuter J. 1988. Contact angles of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly (methyl methacrylate) surfaces. Int J Pharm. 45:91–100.
  • Tröster S, Müller U, Kreuter J. 1990. Modification of the body distribution of poly (methyl methacrylate) nanoparticles in rats by coating with surfactants. Int J Pharm. 61:85–100.
  • van Laar T, Van der Geest R, Danhof M. 1999. Future delivery systems for apomorphine in patients with Parkinson's disease. Adv Neurol. 80:535–544.
  • Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P. 2003. Poly (alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev. 55:519–548.
  • Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W, Vogel T, et al. 2012. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PloS One. 7:e32568.
  • Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, et al. 2011. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson's disease following intranasal administration. J Control Release. 151:131–138.
  • Wu H, Li J, Zhang Q, Yan X, Guo L, Gao X, et al. 2012. A novel small Odorranalectin-bearing cubosomes: Preparation, brain delivery and pharmacodynamic study on amyloid-β25–35-treated rats following intranasal administration. Eur J Pharm Biopharm. 80:368–378.
  • Xin H, Sha X, Jiang X, Chen L, Law K, Gu J, et al. 2012. The brain targeting mechanism of Angiopep-conjugated poly (ethylene glycol)-co-poly (ɛ-caprolactone) nanoparticles. Biomaterials. 33: 1673–1681.
  • Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, et al. 2009. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release. 137:78–86.
  • Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, Qian Y. 2014. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice. Biomaterials. 35:456–465.
  • Zhang Y, Zhang Q, Zha L, Yang W, Wang C, Jiang X, Fu S. 2004. Preparation, characterization and application of pyrene-loaded methoxy poly (ethylene glycol)–poly (lactic acid) copolymer nanoparticles. Colloid Polym Sci. 282:1323–1328.
  • Zhou J. 2010. Recent progress in neurodegenerative disorder research in China. Sci China Life Sci. 53:348–355.
  • Zhou J, Fa H, Yin W, Zhang J, Hou C, Huo D, et al. 2014. Synthesis of superparamagnetic iron oxide nanoparticles coated with a DDNP-carboxyl derivative for in vitro magnetic resonance imaging of Alzheimer's disease. Mater Sci Eng C Mater Biol Appl. 37: 348–355.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.