1,801
Views
54
CrossRef citations to date
0
Altmetric
Review

The blood-epididymis barrier and inflammation

&
Article: e979619 | Received 30 May 2014, Accepted 16 Oct 2014, Published online: 19 Feb 2015

References

  • Hinton BT, Howards SS. Permeability characteristics of the epithelium in the rat caput epididymidis. J Reprod Fertil. 1981; 63:95-9; PMID:7277337; http://dx.doi.org/10.1530/jrf.0.0630095
  • Friend DS, Gilula NB. Variations in tight and gap junctions in mammalian tissues. J Cell Biol. 1972; 53:758-76; PMID:4337577; http://dx.doi.org/10.1083/jcb.53.3.758
  • Suzuki F, Nagano T. Regional differentiation of cell junctions in the excurrent duct epithelium of the rat testis as revealed by freeze-fracture. Anat Rec 1978; 191:503-19; PMID:697060; http://dx.doi.org/10.1002/ar.1091910409
  • Cyr DG, Robaire B, Hermo L. Structure and turnover of junctional complexes between principal cells of the rat epididymis. Microsc Res Tech 1995; 30:54-66; PMID:7711320; http://dx.doi.org/10.1002/jemt.1070300105
  • Agarwal A, Hoffer AP. Ultrastructural studies on the development of the blood-epididymis barrier in immature rats. J Androl 1989; 10:425-31; PMID:2621151
  • Guan X, Inai T, Shibata Y. Segment-specific expression of tight junction proteins, claudin-2 and -10, in the rat epididymal epithelium. Arch Histol Cytol 2005; 68:213-25; PMID:16276027; http://dx.doi.org/10.1679/aohc.68.213
  • Pelletier RM. Blood barriers of the epididymis and vas deferens act asynchronously with the blood barrier of the testis in the mink (Mustela vison). Microsc Res Tech 1994; 27:333-49; PMID:8186451; http://dx.doi.org/10.1002/jemt.1070270408
  • Cyr DG, Hermo L, Egenberger N, Mertineit C, Trasler JM, Laird DW. Cellular immunolocalization of occludin during embryonic and postnatal development of the mouse testis and epididymis. Endocrinology 1999; 140:3815-25; PMID:10433243
  • Hermo L, Korah N, Gregory M, Liu LY, Cyr DG, D’Azzo A, Smith CE. Structural alterations of epididymal epithelial cells in cathepsin A-deficient mice affect the blood-epididymal barrier and lead to altered sperm motility. J Androl 2007; 28:784-97; PMID:17522420; http://dx.doi.org/10.2164/jandrol.107.002980
  • D’Azzo A, Hoogeveen A, Reuser AJ, Robinson D, Galjaard H. Molecular defect in combined β-galactosidase and neuraminidase deficiency in man. Proc Natl Acad Sci U S A 1982; 79:4535-9; http://dx.doi.org/10.1073/pnas.79.15.4535
  • Galjart NJ, Morreau H, Willemsen R, Gillemans N, Bonten EJ, D’Azzo A. Human lysosomal protective protein has cathepsin A-like activity distinct from its protective function. J Biol Chem 1991; 266:14754-62; PMID:1907282
  • Zhou XY, Morreau H, Rottier R, Davis D, Bonten E, Gillemans N, Wenger D, Grosveld FG, Doherty P, Suzuki K, et al. Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells. Genes Dev 1995; 9:2623-34; PMID:7590240; http://dx.doi.org/10.1101/gad.9.21.2623
  • van der Spoel A, Bonten E, d’Azzo A. Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 1998; 17:1588-97; PMID:9501080; http://dx.doi.org/10.1093/emboj/17.6.1588
  • Korah N, Smith CE, D’Azzo A, Mui J, Hermo L. Characterization of cell- and region-specific abnormalities in the epididymis of cathepsin A deficient mice. Mol Reprod.Dev 2003; 66:358-73; http://dx.doi.org/10.1002/mrd.10359
  • Cai J, Wang C, Huang L, Chen M, Zuo Z. A novel effect of polychlorinated biphenyls: impairment of the tight junctions in the mouse epididymis. Toxicol Sci 2013; 134:382-90.
  • Levy S, Robaire B. Segment-specific changes with age in the expression of junctional proteins and the permeability of the blood-epididymis barrier in rats. Biol Reprod 1999; 60:1392-401; http://dx.doi.org/10.1095/biolreprod60.6.1392
  • Serre V, Robaire B. Distribution of immune cells in the epididymis of the aging Brown Norway rat is segment-specific and related to the luminal content. Biol Reprod 1999; 61:705-14; http://dx.doi.org/10.1095/biolreprod61.3.705
  • Dube E, Hermo L, Chan PT, Cyr DG. Alterations in gene expression in the caput epididymides of nonobstructive azoospermic men. Biol Reprod 2008; 78:342-51; http://dx.doi.org/10.1095/biolreprod.107.062760
  • Dube E, Hermo L, Chan PT, Cyr DG. Alterations in the human blood-epididymis barrier in obstructive azoospermia and the development of novel epididymal cell lines from infertile men. Biol Reprod 2010; 83:584-96; http://dx.doi.org/10.1095/biolreprod.110.084459
  • Duan YG, Zhang Q, Liu Y, Mou L, Li G, Gui Y, Cai Z. Dendritic cells in semen of infertile men:association with sperm quality and inflammatory status of the epididymis. Fertil Steril 2014; 101:70-7; http://dx.doi.org/10.1016/j.fertnstert.2013.09.006
  • Shum WW, Smith TB, Cortez-Retamozo V, Grigoryeva LS, Roy JW, Hill E, Pittet MJ, Breton S, Da Silva N, et al. Epithelial basal cells are distinct from dendritic cells and macrophages in the mouse epididymis. Biol Reprod 2014; 90:90; http://dx.doi.org/10.1095/biolreprod.113.116681
  • Heuser A, Mecklenburg L, Ockert D, Kohler M, Kemkowski J. Selective inhibition of PDE4 in Wistar rats can lead to dilatation in testis, efferent ducts, and epididymis and subsequent formation of sperm granulomas. Toxicol Pathol 2013; 41:615-27.
  • Sawamoto O, Kurisu K, Kuwamura M, Kotani T, Yamate J. Relationship of interstitial edema with L-cysteine-induced sperm granulomas in the pubertal rat epididymis. Exp Toxicol Pathol 2003; 55:121-7; http://dx.doi.org/10.1078/0940-2993-00316
  • Sawamoto O, Yamate J, Kuwamura M, Kotani T, Kurisu K. Macrophage populations in L-cysteine-induced rat sperm granulomas. J Comp Pathol 2003; 129:308-12; http://dx.doi.org/10.1016/S0021-9975(03)00043-4
  • Sawamoto O, Yamate J, Kuwamura M, Kotani T, Kurisu K. Development of sperm granulomas in the epididymides of L-cysteine-treated rats. Toxicol Pathol 2003; 31:281-9.
  • Chapin RE, White RD, Morgan KT, Bus JS. Studies of lesions induced in the testis and epididymis of F-344 rats by inhaled methyl chloride. Toxicol Appl Pharmacol 1984; 76:328-43; http://dx.doi.org/10.1016/0041-008X(84)90014-0
  • Pages L, Gavalda A, Lehner MD. PDE4 inhibitors: a review of current developments (2. Expert Opin Ther Pat 2009; 19:1501-19.
  • Shimabukuro-Vornhagen A, Liebig TM, Koslowsky T, Theurich S, von Bergwelt-Baildon MS. The ratio between dendritic cells and T cells determines whether prostaglandin E2 has a stimulatory or inhibitory effect. Cell Immunol. 2013; 281:62-7; PMID:23454682; http://dx.doi.org/10.1016/j.cellimm.2013.01.001
  • Heuser A, Mecklenburg L, Ockert D, Kohler M, Kemkowski J. Selective inhibition of PDE4 in Wistar rats can lead to dilatation in testis, efferent ducts, and epididymis and subsequent formation of sperm granulomas. Toxicol Pathol. 2013; 41:615-27.
  • Chan PT, Schlegel PN. Inflammatory conditions of the male excurrent ductal system. Part II. J Androl 2002; 23:461-9; PMID:12065447
  • Chan PT, Schlegel PN. Inflammatory conditions of the male excurrent ductal system. Part I. J Androl 2002; 23:453-60; PMID:12065446
  • Trojian TH, Lishnak TS, Heiman D. Epididymitis and orchitis: an overview. Am Fam Physician 2009; 79:583-7; PMID:19378875
  • Lee YS, Lee KS. Chlamydia and male lower urinary tract diseases. Korean J Urol 2013; 54:73-7; PMID:23550267; http://dx.doi.org/10.4111/kju.2013.54.2.73
  • Dean AS, Crump L, Greter H, Hattendorf J, Schelling E, Zinsstag J. Clinical manifestations of human brucellosis: a systematic review and meta-analysis. PLoS Negl Trop Dis 2012; 6:e1929; http://dx.doi.org/10.1371/journal.pntd.0001929
  • Sinikumpu JJ, Serlo W. Persistent scrotal pain and suspected orchido-epididymitis of a young boy during pinworm (Enterobius vermicularis) infection in the bowel. Acta Paediatr 2011; 100:e89-e90; PMID:21272069; http://dx.doi.org/10.1111/j.1651-2227.2011.02177.x
  • Flickinger CJ, Yarbro ES, Howards SS, Herr JC, Caloras D, Gallien TN, Spell DR. The incidence of spermatic granulomas and their relation to testis weight after vasectomy and vasovasostomy in Lewis rats. J Androl 1986; 7:285-91; PMID:3490465
  • Belker AM, Konnak JW, Sharlip ID, Thomas AJ, Jr. Intraoperative observations during vasovasostomy in 334 patients. J Urol 1983; 129:524-7; PMID:6834537
  • Adams CE, Wald M. Risks and complications of vasectomy. Urol Clin North Am 2009; 36:331-6.
  • McGinn JS, Sim I, Bennett NK, McDonald SW. Observations on multiple sperm granulomas in the rat epididymis following vasectomy. Clin Anat 2000; 13:185-94; PMID:10797625; http://dx.doi.org/10.1002/(SICI)1098-2353(2000)13:3%3c185::AID-CA5%3e3.0.CO;2-0
  • Flickinger CJ, Herr JC, Baran ML, Howards SS. Testicular development and the formation of spermatic granulomas of the epididymis after obstruction of the vas deferens in immature rats. J Urol 1995; 154:1539-44; PMID:7658586; http://dx.doi.org/10.1016/S0022-5347(01)66924-6
  • Flickinger CJ, Howards SS, Herr JC. Effects of vasectomy on the epididymis. Microsc Res Tech 1995; 30:82-100; http://dx.doi.org/10.1002/jemt.1070300107
  • Flickinger CJ, Baran ML, Howards SS, Herr JC. Sperm autoantigens recognized by autoantibodies in developing rats following prepubertal obstruction of the vas deferens. J Androl 1996; 17:433-42; PMID:8889707
  • Sadek MI, Sada E, Toossi Z, Schwander SK, Rich EA. Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol 1998; 19:513-21; PMID:9730880; http://dx.doi.org/10.1165/ajrcmb.19.3.2815
  • Tani Y, Foster PM, Sills RC, Chan PC, Peddada SD, Nyska A. Epididymal sperm granuloma induced by chronic administration of 2-methylimidazole in B6C3F1 mice. Toxicol Pathol 2005; 33:313-9; PMID:15814360; http://dx.doi.org/10.1080/01926230590922866
  • Hess RA, Bunick D, Lubahn DB, Zhou Q, Bouma J. Morphologic changes in efferent ductules and epididymis in estrogen receptor-α knockout mice. J Androl 2000; 21:107-21; PMID:10670526
  • Raymond AS, Elder B, Ensslin M, Shur BD. Loss of SED1/MFG-E8 results in altered luminal physiology in the epididymis. Mol Reprod Dev 2010; 77:550-63; PMID:20422713; http://dx.doi.org/10.1002/mrd.21189
  • Bedford JM. Adaptations of the male reproductive tract and the fate of spermatozoa following vasectomy in the rabbit, rhesus monkey, hamster and rat. Biol Reprod 1976; 14:118-42; PMID:1260083; http://dx.doi.org/10.1095/biolreprod14.2.118
  • Silber SJ. Sperm granuloma and reversibility of vasectomy. Lancet 1977; 2:588-9; PMID:71402; http://dx.doi.org/10.1016/S0140-6736(77)91432-5
  • Miller RJ, Killian GJ, Vasilenko P, III. Effects of long- and short-term vasectomy on structural and functional parameters of the rat. J Androl 1984; 5:381-8.
  • Viddeleer AC, Nijeholt GA. Lethal Fournier's gangrene following vasectomy. J Urol 1992; 147:1613-4.
  • Chatterjee S, Laloraya M, Kumar GP. Free radical bombing of spermatozoa in spermatic granuloma:an attempt to prevent autoimmune switch-on. Biochem Biophys Res Commun 1994; 201:472-7; http://dx.doi.org/10.1006/bbrc.1994.1725
  • Chatterjee S, Laloraya M, Kumar PG. Free radical-induced liquefaction of ejaculated human semen:a new dimension in semen biochemistry. Arch.Androl 1997; 38:107-11; PMID:9049031; http://dx.doi.org/10.3109/01485019708987887
  • Chatterjee S, Rahman MM, Laloraya M, Kumar GP. Sperm disposal system in spermatic granuloma:a link with superoxide radicals. Int J Androl 2001; 24:278-83; PMID:11554985; http://dx.doi.org/10.1046/j.1365-2605.2001.00298.x
  • Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem 2001; 8:851-62; PMID:11375755; http://dx.doi.org/10.2174/0929867013373039
  • Ford WC. Reactive oxygen species and sperm. Hum Fertil (Camb) 2001; 4:77-8; PMID:11591259; http://dx.doi.org/10.1080/1464727012000199321
  • Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res 2009; 129:357-67.
  • Gu Y, Dee CM, Shen J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci (Schol Ed) 2011; 3:1216-31; PMID:21622267; http://dx.doi.org/10.2741/222
  • Nonogaki T, Noda Y, Narimoto K, Shiotani M, Mori T, Matsuda T, Yoshida O. Localization of CuZn-superoxide dismutase in the human male genital organs. Hum Reprod 1992; 7:81-5.
  • Pickles S, Vande Velde C. Misfolded SOD1 and ALS: zeroing in on mitochondria. Amyotroph Lateral Scler 2012; 13:333-40; http://dx.doi.org/10.3109/17482968.2012.648645
  • Tan W, Pasinelli P, Trotti D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Biochim Biophys Acta 2014; 1842:1295-301
  • Garbuzova-Davis S, Sanberg PR. Blood-CNS Barrier Impairment in ALS patients vs. an animal model. Front Cell Neurosci. 2014; 8:21; PMID:24550780; http://dx.doi.org/10.3389/fncel.2014.00021
  • Veri JP, Hermo L, Robaire B. Immunocytochemical localization of the Yf subunit of glutathione S-transferase P shows regional variation in the staining of epithelial cells of the testis, efferent ducts, and epididymis of the male rat. J Androl 1993; 14:23-44; PMID:8473235
  • Namdarghanbari M, Wobig W, Krezoski S, Tabatabai NM, Petering DH. Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J Biol Inorg Chem 2011; 16:1087-101; http://dx.doi.org/10.1007/s00775-011-0823-6
  • Gunther V, Lindert U, Schaffner W. The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 2012; 1823:1416-25; PMID:22289350; http://dx.doi.org/10.1016/j.bbamcr.2012.01.005
  • Sears ME. Chelation:harnessing and enhancing heavy metal detoxification–a review. ScientificWorldJournal 2013; 2013:219840; PMID:23690738; http://dx.doi.org/10.1155/2013/219840
  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, et al. Cadmium stress:an oxidative challenge. Biometals 2010; 23:927-40; PMID:20361350; http://dx.doi.org/10.1007/s10534-010-9329-x
  • Chiaverini N, De LM. Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic Res 2010; 44:605-13.
  • Namdarghanbari M, Wobig W, Krezoski S, Tabatabai NM, Petering DH. Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J Biol Inorg Chem 2011; 16:1087-101; http://dx.doi.org/10.1007/s00775-011-0823-6
  • De LE, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med 1993; 14:157-66.
  • Aitken RJ, Paterson M, Fisher H, Buckingham DW, van DM. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 1995; 108 (Pt 5):2017-25.
  • Aitken RJ. Possible redox regulation of sperm motility activation. J Androl 2000; 21:491-6; PMID:10901434
  • Griveau JF, Renard P, Le LD. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl 1995; 18:67-74; PMID:7665212; http://dx.doi.org/10.1111/j.1365-2605.1995.tb00388.x
  • Shum WW, Da SN, McKee M, Smith PJ, Brown D, Breton S. Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 2008; 135:1108-17; PMID:19070580; http://dx.doi.org/10.1016/j.cell.2008.10.020
  • Wilson CL, Matrisian LM. Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. Int J Biochem Cell Biol 1996; 28:123-36; http://dx.doi.org/10.1016/1357-2725(95)00121-2
  • Wilson CL, Heppner KJ, Rudolph LA, Matrisian LM. The metalloproteinase matrilysin is preferentially expressed by epithelial cells in a tissue-restricted pattern in the mouse. Mol Biol Cell 1995; 6:851-69; PMID:7579699; http://dx.doi.org/10.1091/mbc.6.7.851
  • Stammler A, Muller D, Tabuchi Y, Konrad L, Middendorff R. TGFbetas modulate permeability of the blood-epididymis barrier in an in vitro model. PLoS One 2013; 8:e80611; http://dx.doi.org/10.1371/journal.pone.0080611
  • Wise SK, Laury AM, Katz EH, Den Beste KA, Parkos CA, Nusrat A. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression. Int Forum Allergy Rhinol 2014; 4:361-70; http://dx.doi.org/10.1002/alr.21298
  • Desai KV, Flanders KC, Kondaiah P. Expression of transforming growth factor-β isoforms in the rat male accessory sex organs and epididymis. Cell Tissue Res 1998; 294:271-7; PMID:9799443; http://dx.doi.org/10.1007/s004410051177
  • Bomgardner D, Wehrenberg U, Rune GM. TGF-β could be involved in paracrine actions in the epididymis of the marmoset monkey (Callithrix jacchus). J Androl 1999; 20:375-83; PMID:10386817
  • Henderson NA, Cooke GM, Robaire B. Region-specific expression of androgen and growth factor pathway genes in the rat epididymis and the effects of dual 5alpha-reductase inhibition. J Endocrinol 2006; 190:779-91; http://dx.doi.org/10.1677/joe.1.06862
  • Lui WY, Lee WM, Cheng CY. Transforming growth factor beta3 regulates the dynamics of Sertoli cell tight junctions via the p38 mitogen-activated protein kinase pathway. Biol Reprod 2003; 68:1597-612; http://dx.doi.org/10.1095/biolreprod.102.011387
  • Lui WY, Lee WM, Cheng CY. Transforming growth factor-beta3 perturbs the inter-Sertoli tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zonula occludens-1, and claudin-11. Endocrinology 2001; 142:1865-77; PMID:11316752
  • Da SN, Cortez-Retamozo V, Reinecker HC, Wildgruber M, Hill E, Brown D, Swirski FK, Pittet MJ, Breton S. A dense network of dendritic cells populates the murine epididymis. Reproduction 2011; 141:653-63; PMID:21310816; http://dx.doi.org/10.1530/REP-10-0493
  • Shiraishi N, Nomura T, Tanizaki H, Nakajima S, Narumiya S, Miyachi Y, Tokura Y, Kabashima K. Prostaglandin E2-EP3 axis in fine-tuning excessive skin inflammation by restricting dendritic cell functions. PLoS One 2013; 8:e69599; http://dx.doi.org/10.1371/journal.pone.0069599
  • Shiraishi H, Yoshida H, Saeki K, Miura Y, Watanabe S, Ishizaki T, Hashimoto M, Takaesu G, Kobayashi T, Yoshimura A. Prostaglandin E2 is a major soluble factor produced by stromal cells for preventing inflammatory cytokine production from dendritic cells. Int Immunol 2008; 20:1219-29; PMID:18640970; http://dx.doi.org/10.1093/intimm/dxn078
  • Da SN, Cortez-Retamozo V, Reinecker HC, Wildgruber M, Hill E, Brown D, Swirski FK, Pittet MJ, Breton S. A dense network of dendritic cells populates the murine epididymis. Reproduction 2011; 141:653-63; PMID:21310816; http://dx.doi.org/10.1530/REP-10-0493
  • Pope JL, Bhat AA, Sharma A, Ahmad R, Krishnan M, Washington MK, Beauchamp RD, Singh AB, Dhawan P. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut 2014; 63:622-34; PMID:23766441; http://dx.doi.org/10.1136/gutjnl-2012-304241
  • Muhlbauer M, Cheely AW, Yenugu S, Jobin C. Regulation and functional impact of lipopolysaccharide induced Nod2 gene expression in the murine epididymal epithelial cell line PC1. Immunology 2008; 124:256-64; PMID:18284470; http://dx.doi.org/10.1111/j.1365-2567.2007.02763.x
  • Reuven EM, Fink A, Shai Y. Regulation of innate immune responses by transmembrane interactions:Lessons from the TLR family. Biochim Biophys Acta 2014; 1838:1586-93.
  • Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 2004; 430:257-63; PMID:15241424; http://dx.doi.org/10.1038/nature02761
  • Silva EJ, Queiroz DB, Rodrigues A, Honda L, Avellar MC. Innate immunity and glucocorticoids: potential regulatory mechanisms in epididymal biology. J Androl 2011; 32:614-24.
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34:637-50; PMID:21616434; http://dx.doi.org/10.1016/j.immuni.2011.05.006
  • Malm J, Nordahl EA, Bjartell A, Sorensen OE, Frohm B, Dentener MA, et al. Lipopolysaccharide-binding protein is produced in the epididymis and associated with spermatozoa and prostasomes. J Reprod Immunol 2005; 66:33-43; PMID:15949560; http://dx.doi.org/10.1016/j.jri.2005.01.005
  • Gatti G, Rivero V, Motrich RD, Maccioni M. Prostate epithelial cells can act as early sensors of infection by up-regulating TLR4 expression and proinflammatory mediators upon LPS stimulation. J Leukoc Biol 2006; 79:989-98; PMID:16522744; http://dx.doi.org/10.1189/jlb.1005597
  • Quintar AA, Roth FD, De Paul AL, Aoki A, Maldonado CA. Toll-like receptor 4 in rat prostate: modulation by testosterone and acute bacterial infection in epithelial and stromal cells. Biol Reprod 2006; 75:664-72; PMID:16870940; http://dx.doi.org/10.1095/biolreprod.106.053967
  • Girling JE, Hedger MP. Toll-like receptors in the gonads and reproductive tract: emerging roles in reproductive physiology and pathology. Immunol Cell Biol 2007; 85:481-9.
  • Palladino MA, Johnson TA, Gupta R, Chapman JL, Ojha P. Members of the Toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract. Biol Reprod 2007; 76:958-64; PMID:17314314; http://dx.doi.org/10.1095/biolreprod.106.059410
  • Palladino MA, Savarese MA, Chapman JL, Dughi MK, Plaska D. Localization of Toll-like receptors on epididymal epithelial cells and spermatozoa. Am J Reprod Immunol 2008; 60:541-55; PMID:19032616; http://dx.doi.org/10.1111/j.1600-0897.2008.00654.x
  • Bhushan S, Schuppe HC, Tchatalbachev S, Fijak M, Weidner W, Chakraborty T, Meinhardt A. Testicular innate immune defense against bacteria. Mol Cell Endocrinol 2009; 306:37-44; PMID:19010387; http://dx.doi.org/10.1016/j.mce.2008.10.017
  • Rodrigues A, Queiroz DB, Honda L, Silva EJ, Hall SH, Avellar MC. Activation of toll-like receptor 4 (TLR4) by in vivo and in vitro exposure of rat epididymis to lipopolysaccharide from Escherichia Coli. Biol Reprod 2008; 79:1135-47; PMID:18703421; http://dx.doi.org/10.1095/biolreprod.108.069930
  • Zhao YT, Guo JH, Wu ZL, Xiong Y, Zhou WL. Innate immune responses of epididymal epithelial cells to Staphylococcus aureus infection. Immunol Lett 2008; 119:84-90.
  • Albiger B, Dahlberg S, Henriques-Normark B, Normark S. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. J Intern Med 2007; 261:511-28; PMID:17547708; http://dx.doi.org/10.1111/j.1365-2796.2007.01821.x
  • Dann SM, Eckmann L. Innate immune defenses in the intestinal tract. Curr Opin Gastroenterol 2007; 23:115-20; http://dx.doi.org/10.1097/MOG.0b013e32803cadf4
  • Heidemann J, Domschke W, Kucharzik T, Maaser C. Intestinal microvascular endothelium and innate immunity in inflammatory bowel disease: a second line of defense? Infect Immun 2006; 74:5425-32; PMID:16988217; http://dx.doi.org/10.1128/IAI.00248-06
  • Harris G, Kuolee R, Chen W. Role of Toll-like receptors in health and diseases of gastrointestinal tract. World J Gastroenterol 2006; 12:2149-60; PMID:16610014
  • Cao D, Li Y, Yang R, Wang Y, Zhou Y, Diao H, et al. Lipopolysaccharide-induced epididymitis disrupts epididymal β-defensin expression and inhibits sperm motility in rats. Biol Reprod 2010; 83:1064-70; PMID:20826730; http://dx.doi.org/10.1095/biolreprod.109.082180
  • Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J. NOD2/CARD15 mediates induction of the antimicrobial peptide human β-defensin-2. J Biol Chem 2006; 281:2005-11; PMID:16319062; http://dx.doi.org/10.1074/jbc.M511044200
  • Com E, Bourgeon F, Evrard B, Ganz T, Colleu D, Jegou B, et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod. 2003; 68:95-104; PMID:12493700; http://dx.doi.org/10.1095/biolreprod.102.005389
  • Yamaguchi Y, Ouchi Y. Antimicrobial peptide defensin:identification of novel isoforms and the characterization of their physiological roles and their significance in the pathogenesis of diseases. Proc Jpn Acad Ser B Phys Biol Sci 2012; 88:152-66; PMID:22498979; http://dx.doi.org/10.2183/pjab.88.152
  • Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J. Human β-defensins. Cell Mol Life Sci 2006; 63:1294-313; PMID:16710608; http://dx.doi.org/10.1007/s00018-005-5540-2
  • Kluver E, Adermann K, Schulz A. Synthesis and structure-activity relationship of β-defensins, multi-functional peptides of the immune system. J Pept Sci 2006; 12:243-57; PMID:16491514; http://dx.doi.org/10.1002/psc.749
  • Li P, Chan HC, He B, So SC, Chung YW, Shang Q, Zhang YD, Zhang Y. An antimicrobial peptide gene found in the male reproductive system of rats. Science 2001; 291:1783-5; PMID:11230693; http://dx.doi.org/10.1126/science.1056545
  • Yudin AI, Tollner TL, Li MW, Treece CA, Overstreet JW, Cherr GN. ESP13.2, a member of the β-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol Reprod 2003; 69:1118-28; PMID:12773404; http://dx.doi.org/10.1095/biolreprod.103.016105
  • Zanich A, Pascall JC, Jones R. Secreted epididymal glycoprotein 2D6 that binds to the sperm's plasma membrane is a member of the β-defensin superfamily of pore-forming glycopeptides. Biol Reprod 2003; 69:1831-42; PMID:12890730; http://dx.doi.org/10.1095/biolreprod.103.018606
  • Zhou CX, Zhang YL, Xiao L, Zheng M, Leung KM, Chan MY, Lo PS, Tsang LL, Wong HY, Ho LS, et al. An epididymis-specific β-defensin is important for the initiation of sperm maturation. Nat Cell Biol 2004; 6:458-64; PMID:15122269; http://dx.doi.org/10.1038/ncb1127
  • Tollner TL, Bevins CL, Cherr GN. Multifunctional glycoprotein DEFB126–a curious story of defensin-clad spermatozoa. Nat Rev Urol 2012; 9:365-75; PMID:22710670; http://dx.doi.org/10.1038/nrurol.2012.109
  • Perry AC, Jones R, Hall L. The monkey ESP14.6 mRNA, a novel transcript expressed at high levels in the epididymis. Gene 1995; 153:291-2; PMID:7875608; http://dx.doi.org/10.1016/0378-1119(94)00739-F
  • Yudin AI, Treece CA, Tollner TL, Overstreet JW, Cherr GN. The carbohydrate structure of DEFB126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx. J Membr Biol 2005; 207:119-29; PMID:16550483; http://dx.doi.org/10.1007/s00232-005-0806-z
  • Tollner TL, Yudin AI, Treece CA, Overstreet JW, Cherr GN. Macaque sperm release ESP13.2 and PSP94 during capacitation: the absence of ESP13.2 is linked to sperm-zona recognition and binding. Mol Reprod Dev 2004; 69:325-37; PMID:15349845; http://dx.doi.org/10.1002/mrd.20132
  • Schroter S, Osterhoff C, McArdle W, Ivell R. The glycocalyx of the sperm surface. Hum Reprod Update 1999; 5:302-13; PMID:10465522; http://dx.doi.org/10.1093/humupd/5.4.302
  • Dacheux JL, Gatti JL, Dacheux F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microsc Res Tech 2003; 61:7-17; PMID:12672118; http://dx.doi.org/10.1002/jemt.10312
  • Yudin AI, Generao SE, Tollner TL, Treece CA, Overstreet JW, Cherr GN. Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Biol Reprod 2005; 73:1243-52; PMID:16079310; http://dx.doi.org/10.1095/biolreprod.105.042432
  • Tollner TL, Yudin AI, Treece CA, Overstreet JW, Cherr GN. Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Hum Reprod 2008; 23:2523-34; PMID:18658160; http://dx.doi.org/10.1093/humrep/den276
  • Tollner TL, Yudin AI, Tarantal AF, Treece CA, Overstreet JW, Cherr GN. Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia. Biol Reprod 2008; 78:400-12; PMID:18003946; http://dx.doi.org/10.1095/biolreprod.107.064071
  • Dube E, Chan PT, Hermo L, Cyr DG. Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis. Biol Reprod. 2007; 76:1034-44; PMID:17287494; http://dx.doi.org/10.1095/biolreprod.106.059246
  • Tollner TL, Venners SA, Hollox EJ, Yudin AI, Liu X, Tang G, et al. A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci Transl Med 2011; 3:92ra65; http://dx.doi.org/10.1126/scitranslmed.3002289
  • Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 2006; 68:403-29; PMID:16460278; http://dx.doi.org/10.1146/annurev.physiol.68.040104.131404
  • Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb. Perspect Biol 2009; 1:a002584.
  • Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, Tamura A, Igarashi M, Endo T, Takeuchi K, et al. Predicted expansion of the claudin multigene family. FEBS Lett 2011; 585:606-12; PMID:21276448; http://dx.doi.org/10.1016/j.febslet.2011.01.028
  • Dube E, Cyr DG. The blood-epididymis barrier and human male fertility. Adv Exp Med Biol 2012; 763:218-36; PMID:23397627
  • Gunzel D, Fromm M. Claudins and other tight junction proteins. Compr Physiol 2012; 2:1819-52; PMID:23723025
  • Sanchez-Pulido L, Martin-Belmonte F, Valencia A, Alonso MA. MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci 2002; 27:599-601; PMID:12468223; http://dx.doi.org/10.1016/S0968-0004(02)02229-6
  • Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 2010; 21:1200-13; PMID:20164257; http://dx.doi.org/10.1091/mbc.E09-08-0734
  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 2005; 171:939-45; PMID:16365161; http://dx.doi.org/10.1083/jcb.200510043
  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000; 11:4131-42; PMID:11102513; http://dx.doi.org/10.1091/mbc.11.12.4131
  • Cyr DG, Hermo L, Egenberger N, Mertineit C, Trasler JM, Laird DW. Cellular immunolocalization of occludin during embryonic and postnatal development of the mouse testis and epididymis. Endocrinology 1999; 140:3815-25; PMID:10433243
  • Gregory M, Dufresne J, Hermo L, Cyr D. Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology 2001; 142:854-63; PMID:11159859
  • Guan X, Inai T, Shibata Y. Segment-specific expression of tight junction proteins, claudin-2 and -10, in the rat epididymal epithelium. Arch Histol Cytol 2005; 68:213-25; PMID:16276027; http://dx.doi.org/10.1679/aohc.68.213
  • Gregory M, Cyr DG. Identification of multiple claudins in the rat epididymis. Mol Reprod Dev 2006; 73:580-8; PMID:16489631; http://dx.doi.org/10.1002/mrd.20467
  • DeBellefeuille S, Hermo L, Gregory M, Dufresne J, Cyr DG. Catenins in the rat epididymis: their expression and regulation in adulthood and during postnatal development. Endocrinology 2003; 144:5040-9; PMID:12960056; http://dx.doi.org/10.1210/en.2002-0139
  • Gregory M, Dufresne J, Hermo L, Cyr D. Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology 2001; 142:854-63; PMID:11159859
  • Dufresne J, Cyr DG. Activation of an SP binding site is crucial for the expression of claudin 1 in rat epididymal principal cells. Biol Reprod 2007; 76:825-32; PMID:17251524; http://dx.doi.org/10.1095/biolreprod.106.057430
  • Lopardo T, Lo IN, Marinari B, Giustizieri ML, Cyr DG, Merlo G, Crosti F, Costanzo A, Guerrini L. Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS.One. 2008; 3:e2715; http://dx.doi.org/10.1371/journal.pone.0002715
  • Belleannee C, Calvo E, Thimon V, Cyr DG, Legare C, Garneau L, Sullivan R. Role of microRNAs in controlling gene expression in different segments of the human epididymis. PLoS One 2012; 7:e34996; PMID:22511979; http://dx.doi.org/10.1371/journal.pone.0034996
  • Veri JP, Hermo L, Robaire B. Immunocytochemical localization of glutathione S-transferase Yo subunit in the rat testis and epididymis. J Androl 1994; 15:415-34; PMID:7860422
  • Shum WW, Da SN, Brown D, Breton S. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. J Exp Biol 2009; 212:1753-61; PMID:19448084; http://dx.doi.org/10.1242/jeb.027284
  • Wong PY, Chan HC, Leung PS, Chung YW, Wong YL, Lee WM, Ng V, Dun NJ. Regulation of anion secretion by cyclo-oxygenase and prostanoids in cultured epididymal epithelia from the rat. J Physiol 1999; 514 (Pt 3):809-20; PMID:9882752; http://dx.doi.org/10.1111/j.1469-7793.1999.809ad.x
  • Wong PY. CFTR gene and male fertility. Mol Hum Reprod 1998; 4:107-10; PMID:9542966; http://dx.doi.org/10.1093/molehr/4.2.107
  • Abd-Allah AR, Helal GK, Al-Yahya AA, Aleisa AM, Al-Rejaie SS, Al-Bakheet SA. Pro-inflammatory and oxidative stress pathways which compromise sperm motility and survival may be altered by L-carnitine. Oxid.Med.Cell Longev. 2009; 2:73-81; http://dx.doi.org/10.4161/oxim.2.2.8177
  • Leslie EM, Deeley RG, Cole SP. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology 2001; 167:3-23; PMID:11557126; http://dx.doi.org/10.1016/S0300-483X(01)00454-1
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol.Rev. 2010; 62:1-96.
  • Seeger MA, van Veen HW. Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta 2009; 1794:725-37; PMID:19135557; http://dx.doi.org/10.1016/j.bbapap.2008.12.004
  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987; 84:7735-8; PMID:2444983; http://dx.doi.org/10.1073/pnas.84.21.7735
  • Jones SR, Cyr DG. Regulation and characterization of the ATP-binding cassette transporter-B1 in the epididymis and epididymal spermatozoa of the rat. Toxicol.Sci. 2011; 119:369-79.
  • Dufresne J, St-Pierre N, Viger RS, Hermo L, Cyr DG. Characterization of a novel rat epididymal cell line to study epididymal function. Endocrinology 2005; 146:4710-20; PMID:16099865; http://dx.doi.org/10.1210/en.2004-1634
  • Chan HC, Ko WH, Zhao W, Fu WO, Wong PY. Evidence for independent Cl- and. Exp Physiol 1996; 81:515-24; PMID:8737084
  • Radpour R, Gourabi H, Dizaj AV, Holzgreve W, Zhong XY. Genetic investigations of CFTR mutations in congenital absence of vas deferens, uterus, and vagina as a cause of infertility. J Androl 2008; 29:506-13; PMID:18567645; http://dx.doi.org/10.2164/jandrol.108.005074
  • Claustres M. Molecular pathology of the CFTR locus in male infertility. Reprod Biomed Online 2005; 10:14-41; PMID:15705292; http://dx.doi.org/10.1016/S1472-6483(10)60801-2
  • van d V, Messer L, van d V, Jeyendran RS, Ober C. Cystic fibrosis mutation screening in healthy men with reduced sperm quality. Hum Reprod 1996; 11:513-7; PMID:8671256; http://dx.doi.org/10.1093/HUMREP/11.3.513
  • Schulz S, Jakubiczka S, Kropf S, Nickel I, Muschke P, Kleinstein J. Increased frequency of cystic fibrosis transmembrane conductance regulator gene mutations in infertile males. Fertil Steril 2006; 85:135-8; PMID:16412743; http://dx.doi.org/10.1016/j.fertnstert.2005.07.1282
  • Cuppens H, Cassiman JJ. CFTR mutations and polymorphisms in male infertility. Int J Androl 2004; 27:251-6; PMID:15379964; http://dx.doi.org/10.1111/j.1365-2605.2004.00485.x
  • Sun X, Sui H, Fisher JT, Yan Z, Liu X, Cho HJ, Joo NS, Zhang Y, Zhou W, Yi Y, et al. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest 2010; 120:3149-60; PMID:20739752; http://dx.doi.org/10.1172/JCI43052
  • Pierucci-Alves F, Akoyev V, Stewart JC, III, Wang LH, Janardhan KS, Schultz BD. Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod. 2011; 85:442-51; PMID:21593481; http://dx.doi.org/10.1095/biolreprod.111.090860
  • Reynaert I, Van Der Schueren B, Degeest G, Manin M, Cuppens H, Scholte B, Cassiman JJ. Morphological changes in the vas deferens and expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in control, deltaF508 and knock-out CFTR mice during postnatal life. Mol Reprod Dev 2000; 55:125-35; PMID:10618651; http://dx.doi.org/10.1002/(SICI)1098-2795(200002)55:2%3c125::AID-MRD1%3e3.0.CO;2-Q
  • Xu WM, Shi QX, Chen WY, Zhou CX, Ni Y, Rowlands DK, Yi Liu G, Zhu H, Ma ZG, Wang XF, et al. Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc Natl Acad Sci U S A 2007; 104:9816-21; PMID:17519339; http://dx.doi.org/10.1073/pnas.0609253104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.