4,619
Views
162
CrossRef citations to date
0
Altmetric
Review

Mechanisms of spermiogenesis and spermiation and how they are disturbed

Article: e979623 | Received 26 May 2014, Accepted 16 Oct 2014, Published online: 19 Feb 2015

References

  • Leblond CP, Clermont Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat 1952; 90:167-215; PMID:14923625; http://dx.doi.org/10.1002/aja.1000900202
  • Wong EW, Mruk DD, Cheng CY. Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochimica et Biophysica Acta 2008; 1778:692-708; PMID:18068662; http://dx.doi.org/10.1016/j.bbamem.2007.11.006
  • Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 2004; 67:271-84; PMID:15700535; http://dx.doi.org/10.1679/aohc.67.271
  • Braun RE. Post-transcriptional control of gene expression during spermatogenesis. Semin Cell Dev Biol 1998; 9:483-9; PMID:9813196; http://dx.doi.org/10.1006/scdb.1998.0226
  • Hecht NB. Molecular mechanisms of male germ cell differentiation. BioEssays: News Rev Mol, Cell Dev Biol 1998; 20:555-61; PMID:9723004; http://dx.doi.org/10.1002/(SICI)1521-1878(199807)20:7%3c555::AID-BIES6%3e3.0.CO;2-J
  • Johnston DS, Wright WW, Dicandeloro P, Wilson E, Kopf GS, Jelinsky SA. Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells. Proc Nat Acad Sci U S A 2008; 105:8315-20; PMID:18544648; http://dx.doi.org/10.1073/pnas.0709854105
  • Eddy EM. The spermatozooan. In: Neill JD, ed. Knobil and Neill's Physiology of Reproduction. San Diego, CA: Elsevier, 2006; 3-54.
  • Escalier D. Knockout mouse models of sperm flagellum anomalies. Hum Reprod Update 2006; 12:449-61; PMID:16565154; http://dx.doi.org/10.1093/humupd/dml013
  • Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genesproteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63; PMID:19941287; http://dx.doi.org/10.1002/jemt.20783
  • O’Donnell L, Nicholls PK, O’Bryan MK, McLachlan RI, Stanton PG. Spermiation: the process of sperm release. Spermatogenesis 2011; 1:14-35; PMID:21866274; http://dx.doi.org/10.4161/spmg.1.1.14525
  • Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM. Germ cell intercellular bridges. Cold Spring Harbor Perspect Biol 2011; 3:a005850; PMID:21669984; http://dx.doi.org/10.1101/cshperspect.a005850
  • Ventela S, Toppari J, Parvinen M. Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell 2003; 14:2768-80; PMID:12857863; http://dx.doi.org/10.1091/mbc.E02-10-0647
  • Huckins C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec 1971; 169:533-57; PMID:5550532; http://dx.doi.org/10.1002/ar.1091690306
  • Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD. Genetically haploid spermatids are phenotypically diploid. Nature 1989; 337:373-6; PMID:2911388; http://dx.doi.org/10.1038/337373a0
  • Morales CR, Wu XQ, Hecht NB. The DNARNA-binding protein, TB-RBP, moves from the nucleus to the cytoplasm and through intercellular bridges in male germ cells. Dev Biol 1998; 201:113-23; PMID:9733578; http://dx.doi.org/10.1006/dbio.1998.8967
  • Weber JE, Russell LD. A study of intercellular bridges during spermatogenesis in the rat. Am J Anat 1987; 180:1-24; PMID:3661461; http://dx.doi.org/10.1002/aja.1001800102
  • Huang WP, Ho HC. Role of microtubule-dependent membrane trafficking in acrosomal biogenesis. Cell Tissue Res 2006; 323:495-503; PMID:16341711; http://dx.doi.org/10.1007/s00441-005-0097-9
  • Greenbaum MP, Yan W, Wu MH, Lin YN, Agno JE, Sharma M, Braun RE, Rajkovic A, Matzuk MM. TEX14 is essential for intercellular bridges and fertility in male mice. Proc Nat Acad Sci U S A 2006; 103:4982-7; PMID:16549803; http://dx.doi.org/10.1073/pnas.0505123103
  • Agromayor M, Martin-Serrano J. Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol 2013; 23:433-41; PMID:23706391; http://dx.doi.org/10.1016/j.tcb.2013.04.006
  • O’Donnell L, Rhodes D, Smith SJ, Merriner DJ, Clark BJ, Borg C, Whittle B, O’Connor AE, Smith LB, McNally FJ, et al. An essential role for katanin p80 and microtubule severing in male gamete production. PLoS Genet 2012; 8:e1002698; PMID:22654669; http://dx.doi.org/10.1371/journal.pgen.1002698
  • de Kretser DM, O’Donnell L. Phenotypic assessment of male fertility status in transgenic animal models. Methods Mol Biol 2013; 927:531-48; PMID:22992942; http://dx.doi.org/10.1007/978-1-62703-038-0_45
  • Ventela S, Mulari M, Okabe M, Tanaka H, Nishimune Y, Toppari J, Parvinen M. Regulation of acrosome formation in mice expressing green fluorescent protein as a marker. Tissue Cell 2000; 32:501-7; PMID:11197232; http://dx.doi.org/10.1016/S0040-8166(00)80006-3
  • Kierszenbaum AL, Rivkin E, Tres LL. Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis 2011; 1:221-30; PMID:22319670; http://dx.doi.org/10.4161/spmg.1.3.18018
  • Toshimori K, Ito C. Formation and organization of the mammalian sperm head. Arch Histol Cytol 2003; 66:383-96; PMID:15018141; http://dx.doi.org/10.1679/aohc.66.383
  • Kierszenbaum AL, Tres LL, Rivkin E, Kang-Decker N, van Deursen JM. The acroplaxome is the docking site of Golgi-derived myosin VaRab27ab- containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol Reprod 2004; 70:1400-10; PMID:14724135; http://dx.doi.org/10.1095/biolreprod.103.025346
  • Dam AH, Feenstra I, Westphal JR, Ramos L, van Golde RJ, Kremer JA. Globozoospermia revisited. Hum Reprod Update 2007; 13:63-75; PMID:17008355; http://dx.doi.org/10.1093/humupd/dml047
  • Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genesproteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 2010; 73:279-319; PMID:19941292; http://dx.doi.org/10.1002/jemt.20783
  • Kierszenbaum AL, Rivkin E, Tres LL. The actin-based motor myosin Va is a component of the acroplaxome, an acrosome-nuclear envelope junctional plate, and of manchette-associated vesicles. Cytogen Genome Res 2003; 103:337-44; PMID:15051957; http://dx.doi.org/10.1159/000076822
  • O’Donnell L, O’Bryan MK. Microtubules and spermatogenesis. Semin Cell Dev Biol 2014; 30:45-54; PMID:24440897; http://dx.doi.org/10.1016/j.semcdb.2014.01.003
  • Russell LD, Russell JA, MacGregor GR, Meistrich ML. Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am J Anat 1991; 192:97-120; PMID:1759685; http://dx.doi.org/10.1002/aja.1001920202
  • Meistrich ML, Trostle-Weige PK, Russell LD. Abnormal manchette development in spermatids of azhazh mutant mice. Am J Anat 1990; 188:74-86; PMID:2346121; http://dx.doi.org/10.1002/aja.1001880109
  • Moreno RD, Schatten G. Microtubule configurations and post-translational alpha-tubulin modifications during mammalian spermatogenesis. Cell Motil Cytoskel 2000; 46:235-46; PMID:10962478; http://dx.doi.org/10.1002/1097-0169(200008)46 :4%3c235::AID-CM1%3e3.0.CO;2-G
  • Rattner JB, Brinkley BR. Ultrastructure of mammalian spermiogenesis. 3. The organization and morphogenesis of the manchette during rodent spermiogenesis. J Ultrastruct Res 1972; 41:209-18; PMID:4636018; http://dx.doi.org/10.1016/S0022-5320(72)90065-2
  • Sperry AO. The dynamic cytoskeleton of the developing male germ cell. Biol Cell Under Auspices Eur Cell Biol Organ 2012; 104:297-305; PMID:22276751; http://dx.doi.org/10.1111/boc.201100102
  • Yoshida T, Ioshii SO, Imanaka-Yoshida K, Izutsu K. Association of cytoplasmic dynein with manchette microtubules and spermatid nuclear envelope during spermiogenesis in rats. J Cell Sci 1994; 107 (Pt 3):625-33; PMID:8006076
  • Nakai M, Hess RA, Matsuo F, Gotoh Y, Nasu T. Further observations on carbendazim-induced abnormalities of spermatid morphology in rats. Tissue Cell 1997; 29:477-85; PMID:9281846; http://dx.doi.org/10.1016/S0040-8166(97)80033-X
  • Zhou J, Du YR, Qin WH, Hu YG, Huang YN, Bao L, Han D, Mansouri A, Xu GL. RIM-BP3 is a manchette-associated protein essential for spermiogenesis. Development 2009; 136:373-82; PMID:19091768; http://dx.doi.org/10.1242/dev.030858
  • Mendoza-Lujambio I, Burfeind P, Dixkens C, Meinhardt A, Hoyer-Fender S, Engel W, Neesen J. The Hook1 gene is non-functional in the abnormal spermatozoon head shape (azh) mutant mouse. Hum Mol Genet 2002; 11:1647-58; PMID:12075009; http://dx.doi.org/10.1093/hmg/11.14.1647
  • Lehti MS, Kotaja N, Sironen A. KIF3A is essential for sperm tail formation and manchette function. Mol Cell Endocrinol 2013; 377:44-55; PMID:23831641; http://dx.doi.org/10.1016/j.mce.2013.06.030
  • Nozawa YI, Yao E, Gacayan R, Xu SM, Chuang PT. Mammalian Fused is essential for sperm head shaping and periaxonemal structure formation during spermatogenesis. Dev Biol 2014; 388:170-80; PMID:24525297; http://dx.doi.org/10.1016/j.ydbio.2014.02.002
  • Braun RE. Packaging paternal chromosomes with protamine. Nat Genet 2001; 28:10-2; PMID:11326265
  • Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G, Krawetz SA. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 2011; 141:21-36; PMID:20876223; http://dx.doi.org/10.1530/REP-10-0322
  • Oliva R. Protamines and male infertility. Hum Reprod Update 2006; 12:417-35; PMID:16581810; http://dx.doi.org/10.1093/humupd/dml009
  • Sassone-Corsi P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 2002; 296:2176-8; PMID:12077401; http://dx.doi.org/10.1126/science.1070963
  • Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 2001; 28:82-6; PMID:11326282
  • Tanaka H, Iguchi N, Isotani A, Kitamura K, Toyama Y, Matsuoka Y, Onishi M, Masai K, Maekawa M, Toshimori K, et al. HANP1H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility. Mol Cell Biol 2005; 25:7107-19; PMID:16055721; http://dx.doi.org/10.1128/MCB.25.16.7107-7119.2005
  • Lee JDt, Allen MJ, Balhorn R. Atomic force microscope analysis of chromatin volumes in human sperm with head-shape abnormalities. Biol Reprod 1997; 56:42-9; PMID:9002631; http://dx.doi.org/10.1095/biolreprod56.1.42
  • Maettner R, Sterzik K, Isachenko V, Strehler E, Rahimi G, Alabart JL, Sanchez R, Mallmann P, Isachenko E. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity. Andrologia 2013; 46:547-55; PMID:23692628; http://dx.doi.org/10.1111/and.12114
  • Kosower NS, Katayose H, Yanagimachi R. Thiol-disulfide status and acridine orange fluorescence of mammalian sperm nuclei. J Androl 1992; 13:342-8; PMID:1399837
  • Escudier E, Duquesnoy P, Papon JF, Amselem S. Ciliary defects and genetics of primary ciliary dyskinesia. Paediat Resp Rev 2009; 10:51-4; PMID:19410201; http://dx.doi.org/10.1016/j.prrv.2009.02.001
  • Chemes HE. Sperm centrioles and their dual roles in flagellogenesis and cell cycle of the zygote. In: Schatten H, ed. The Centrosome, Humana Press, 2012; 33-48
  • Kierszenbaum AL. Sperm axoneme: a tale of tubulin posttranslation diversity. Mol Reprod Dev 2002; 62:1-3; PMID:11933155; http://dx.doi.org/10.1002/mrd.10139
  • Ikegami K, Setou M. Unique post-translational modifications in specialized microtubule architecture. Cell Struct Funct 2010; 35:15-22; PMID:20190462; http://dx.doi.org/10.1247/csf.09027
  • Borg CL, Wolski KM, Gibbs GM, O’Bryan MK. Phenotyping male infertility in the mouse: how to get the most out of a ‘non-performer’. Hum Reprod Update 2010; 16:205-24; PMID:19758979; http://dx.doi.org/10.1093/humupd/dmp032
  • Calvin HI, Bedford JM. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fert Supp 1971; 13:Suppl 13:65-75; PMID:5292801
  • Eddy EM, Toshimori K, O’Brien DA. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 2003; 61:103-15; PMID:12672126; http://dx.doi.org/10.1002/jemt.10320
  • Brown PR, Miki K, Harper DB, Eddy EM. A-kinase anchoring protein 4 binding proteins in the fibrous sheath of the sperm flagellum. Biol Reprod 2003; 68:2241-8; PMID:12606363; http://dx.doi.org/10.1095/biolreprod.102.013466
  • Carr DW, Fujita A, Stentz CL, Liberty GA, Olson GE, Narumiya S. Identification of sperm-specific proteins that interact with A-kinase anchoring proteins in a manner similar to the type II regulatory subunit of PKA. J Biol Chem 2001; 276:17332-8; PMID:11278869; http://dx.doi.org/10.1074/jbc.M011252200
  • Morga B, Bastin P. Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences. Cilia 2013; 2:16; PMID:24289478; http://dx.doi.org/10.1186/2046-2530-2-16
  • Vogl AW, Vaid KS, Guttman JA. The Sertoli cell cytoskeleton. In: Cheng CY, ed. Molecular Mechanisms in Spermatogenesis: Landes Bioscience and Springer Science+Business Media, 2008; 186-209.
  • Guttman J, Kimel G, Vogl AW. Dyein and plus-end microtubule-dependent motors are associaed with specialized Sertoli cell junction plaques (ectoplasmic specializations). J Cell Sci 2000; 113:2167-76; PMID:10825290
  • Russell L. Role in spermiation. In: Russell LD, Griswold MD, eds. The Sertoli Cell. Clearwater, FL: Cache River Press, 1993; 269-302
  • Russell LD. The perils of sperm release– ‘let my children go’. Int J Androl 1991; 14:307-11; PMID:1794915; http://dx.doi.org/10.1111/j.1365-2605.1991.tb01097.x
  • Vogl AW, Du M, Wang XY, Young JS. Novel clathrinactin-based endocytic machinery associated with junction turnover in the seminiferous epithelium. Semin Cell Dev Biol 2013; 30:55-64; PMID:24280271; http://dx.doi.org/10.1016/j.semcdb.2013.11.002
  • Vogl AW, Young JS, Du M. New insights into roles of tubulobulbar complexes in sperm release and turnover of blood-testis barrier. Int Rev Cell Mol Biol 2013; 303:319-55; PMID:23445814; http://dx.doi.org/10.1016/B978-0-12-407697-6.00008-8
  • Young JS, Guttman JA, Vaid KS, Vogl AW. Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 2009; 80:162-74; PMID:18799754; http://dx.doi.org/10.1095/biolreprod.108.070623
  • Young JS, Guttman JA, Vaid KS, Shahinian H, Vogl AW. Cortactin (CTTN), N-WASP (WASL), and clathrin (CLTC) are present at podosome-like tubulobulbar complexes in the rat testis. Biol Reprod 2009; 80:153-61; PMID:18799755; http://dx.doi.org/10.1095/biolreprod.108.070615
  • Vaid KS, Guttman JA, Babyak N, Deng W, McNiven MA, Mochizuki N, Finlay BB, Vogl AW. The role of dynamin 3 in the testis. J Cell Physiol 2007; 210:644-54; PMID:17133358; http://dx.doi.org/10.1002/jcp.20855
  • Young JS, De Asis M, Guttman J, Vogl AW. Cortactin depletion results in short tubulobulbar complexes and spermiation failure in rat testes. Biol Open 2012; 1:1069-77; PMID:23213386; http://dx.doi.org/10.1242/bio.20122519
  • Russell LD. Spermatid-Sertoli tubulobulbar complexes as devices for elimination of cytoplasm from the head region late spermatids of the rat. Anat Rec 1979; 194:233-46; PMID:464324; http://dx.doi.org/10.1002/ar.1091940205
  • Sprando RL, Russell LD. Comparative study of cytoplasmic elimination in spermatids of selected mammalian species. Am J Anat 1987; 178:72-80; PMID:3825964; http://dx.doi.org/10.1002/aja.1001780109
  • Chapin RE, Wine RN, Harris MW, Borchers CH, Haseman JK. Structure and control of a cell-cell adhesion complex associated with spermiation in rat seminiferous epithelium. J Androl 2001; 22:1030-52; PMID:11700851
  • Wine RN, Chapin RE. Adhesion and signaling proteins spatiotemporally associated with spermiation in the rat. J Androl 1999; 20:198-213; PMID:10232655
  • Qian X, Mruk DD, Cheng YH, Tang EI, Han D, Lee WM, Wong EW, Cheng CY. Actin binding proteins, spermatid transport and spermiation. Semin Cell Dev Biol 2014; 30:75-85; PMID:24735648; http://dx.doi.org/10.1016/j.semcdb.2014.04.018
  • Beardsley A, O’Donnell L. Characterization of normal spermiation and spermiation failure induced by hormone suppression in adult rats. Biol Reprod 2003; 68:1299-307; PMID:12606480; http://dx.doi.org/10.1095/biolreprod.102.009811
  • Beardsley A, Robertson DM, O’Donnell L. A complex containing alpha6beta1-integrin and phosphorylated focal adhesion kinase between Sertoli cells and elongated spermatids during spermatid release from the seminiferous epithelium. J Endocrinol 2006; 190:759-70; PMID:17003277; http://dx.doi.org/10.1677/joe.1.06867
  • Meistrich ML, Hess RA. Assessment of spermatogenesis through staging of seminiferous tubules. Methods Mol Biol 2013; 927:299-307; PMID:22992924; http://dx.doi.org/10.1007/978-1-62703-038-0_27.
  • Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and histopathological evaluation of the testis. Clearwater, Florida: Cache River Press, 1990
  • Bartles JR, Wierda A, Zheng L. Identification and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations. J Cell Sci 1996; 109 (Pt 6):1229-39; PMID:8799813
  • Russell LD, Saxena NK, Turner TT. Cytoskeletal involvement in spermiation and sperm transport. Tissue Cell 1989; 21:361-79; PMID:2479117; http://dx.doi.org/10.1016/0040-8166(89)90051-7
  • Kopera IA, Bilinska B, Cheng CY, Mruk DD. Sertoli-germ cell junctions in the testis: a review of recent data. Philos Trans R Soc Lond B Biol Sci 2010; 365:1593-605; PMID:20403872; http://dx.doi.org/10.1098/rstb.2009.0251
  • Yeung CH, Cooper TG. Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 2010; 139:209-16; PMID:19812234; http://dx.doi.org/10.1530/REP-09-0298
  • Ku WW, Chapin RE, Wine RN, Gladen BC. Testicular toxicity of boric acid (BA): relationship of dose to lesion development and recovery in the F344 rat. Reprod Toxicol 1993; 7:305-19; PMID:8400621; http://dx.doi.org/10.1016/0890-6238(93)90020-8
  • Russell LD, Russell JA. Short-term morphological response of the rat testis to administration of five chemotherapeutic agents. Am J Anat 1991; 192:142-68; PMID:1759681; http://dx.doi.org/10.1002/aja.1001920205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.