7
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Nutrient Dynamics in Decomposing Forest Leaf Litter: A Comparison of Field and Laboratory Microcosm Approach

, &
Pages 91-98 | Accepted 17 Feb 1998, Published online: 01 Oct 2005
 

Abstract

The effect of incubation setting (greenhouse: GM and field: FM microcosms) on nutrient element dynamics during decomposition of Japanese Konara Oak (Quercus serrata Murray) and Japanese Red Pine (Pinus densiflora Sieb et. Zucc.) litter was studied. Results show a disparity in relative concentrations and amounts of the same type of litter when incubated in different settings. The nutrient mobility, however, showed similar trend. The order of elemental mobility after 12 months forQuercus in FM was: P>K>Mg>C>Mn>Ca>N>Al>Cu>Zn>Fe; for GM it was: P>K>Mn>Mg>C>Ca>N>Al>Cu>Zn>Fe. ForPinus, elemental mobility in FM was: K>Mg>C>Mn>N>P>Cu>Zn>Al>Fe; while for GM was: K>C>Mn>N>Ca>Mg>Cu>Al>P>Zn>Fe. The elements inQuercus that lost their mass were P, K, Mg, Ca, Mn and C while those that increased were N, Cu, Al, Fe and Zn. ForPinus, K and Mg lost their nutrient mass while the other elements had increased or fluctuated but tended to increase. Three patterns of nutrient mobility were observed: first, the concentration increased while the nutrient mass (absolute amount) decreased; second, both concentration and nutrient mass increased; third, the concentration and nutrient mass decreased. On tracing nutrient mobility over time, the linear regression of nutrient element mass and litter element mass was preferred over the carbon to element ratios because the former gave a clearer picture of the relationship. On the over-all, the pattern of nutrient changes in greenhouse microcosms were different from those observed in the field, hence nutrient cycling studies using greenhouse-microcosm approach alone may give inaccurate results.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.