30
Views
44
CrossRef citations to date
0
Altmetric
Original Article

A new synthesis reaction of Ti3SiC2 from Ti/TiSi2/TiC powder mixtures through pulse discharge sintering (PDS) technique

, , &
Pages 185-189 | Received 05 Sep 2001, Accepted 11 Sep 2001, Published online: 13 Oct 2016
 

Abstract

Ti/TiSi2/TiC powder mixtures with molar ratios of 1:1:4 (M1) and 1:1:3 (M2) were first employed for the synthesis of Ti3SiC2 through pulse discharge sintering (PDS) technique in a temperature range of 1100–1325 °C. It was found that Ti3SiC2 phase began to form at the temperature above 1200 °C and its purity did not show obvious dependence on the sintering temperature at 1225–1325 °C. The TiC contents in M2 samples is always lower than that of the M1 samples, and the lowest TiC contents in the M1 and M2 samples were calculated to be about 7 wt% and 5 wt% when the sintering was conducted at the temperature near 1300 °C for 15 minutes. The relative density of the M1 samples is always higher than 99% at sintering temperature above 1225 °C, indicating a good densification effect produced by the PDS technique. A solid-liquid reaction mechanism between Ti-Si liquid phase and TiC particles was proposed to explain the rapid formation of Ti3SiC2. Furthermore, it is suggested that Ti/TiSi2/TiC powder can be regarded as a new mixture to fabricate ternary carbide Ti3SiC2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.