64
Views
69
CrossRef citations to date
0
Altmetric
Original Article

Microwave enhanced reaction kinetics in ceramics

, &
Pages 77-84 | Received 08 Apr 1997, Accepted 14 Apr 1997, Published online: 13 Oct 2016
 

Abstract

Numerous observations have been reported in the literature of enhanced mass transport and solid-state reaction rates during microwave heating or processing of a variety of ceramic, glass, and polymer materials. These empirical observations of microwave enhancements have been broadly called the “microwave effect”. In the past, these claims have been the source of significant controversy, due in part to the lack of a credible and verifiable theoretical explanation. Moreover, certain notable microwave heating experiments have failed to observe any resolvable reaction or transport rate enhancements. This paper describes a series of recent experimental and numerical investigations that have established the fact that strong microwave electric fields induce a (previously unknown) nonlinear driving force for (ionic) mass transport near surfaces and structural interfaces (e.g., grain boundaries) in ceramic materials. This driving force can influence reaction kinetics by enhancing mass transport rates in heterogeneous solid-state reactions. Most of the previously reported observations regarding “microwave effects” (both for and against) are consistent with the characteristics of this newly identified microwave-induced driving force.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.