475
Views
0
CrossRef citations to date
0
Altmetric
Articles

Total irregularity strength for product of two paths

, &

Abstract

In this paper we define a totally irregular total labeling for Cartesian and strong product of two paths, which is at the same time vertex irregular total labeling and also edge irregular total labeling. More preciously, we determine the exact value of the total irregularity strength for Cartesian and strong product of two paths.

1 Introduction

For a graph G we define a labeling ζ:VE{1,2,,k} to be total k-labeling. A total k-labeling is defined to be an edge irregular total klabeling of the graph G if for each two distinct edges rs and rs their weights ϕ(r)+ϕ(rs)+ϕ(s) and ϕ(r)+ϕ(rs)+ϕ(s) are distinct. Also total k-labeling is defined to be a vertex irregular total k-labeling of the graph G if for each two distinctive vertices r and s their weights wt(r) and wt(s) are distinct. Here, the weight of a vertex r in G is the sum of the label of r and the labels of all edges incident with the vertex r. The least k for which the graph G has an edge irregular total klabeling is called the total irregularity strength of G, represented by tes(G). Analogously, the minimum k for which the graph G has a vertex irregular total klabeling is called the total vertex irregularity strength of G, denoted by tvs(G). A total labeling ψ:VE{1,2,,k} is called totally irregular total k-labeling of G if every two distinct vertices a and b satisfy wt(a)wt(b), and every two distinct edges a1a2 and b1b2 in E(G) satisfy wt(a1a2)wt(b1b2). The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G).

In [Citation1] Chartrand et al. introduced two graph invariants namely irregular assignments and the irregularity strength. In [Citation2] Baca et al. modified these graph invariants and introduced the concept of total edge irregularity strength, total vertex irregularity strength for a graph G and proved the following theorems.

Theorem 1.1

[Citation2] Let G be a finite graph with p vertices, q edges and having maximum degree Δ=Δ(G). Then tes(G)maxq+23,Δ+12.

Theorem 1.2

[Citation2] Let G be a finite graph with p vertices, q edges, minimum degree δ=δ(G) and maximum degree Δ=Δ(G). Then p+δΔ+1tvs(G)p+Δ2δ+1.

In [Citation3] Ivančo and Jendroľ posed the following conjecture:

Conjecture 1

[Citation3] Let G be a finite graph with p vertices, q edges, minimum degree δ=δ(G), maximum degree Δ=Δ(G) and different from K5. Then tes(G)=maxq+23,Δ+12.In [Citation4] Nurdin et al. posed the following conjecture:

Conjecture 2

[Citation4] Let G be a connected graph having ni vertices of degree i(i=δ,δ+1,δ+2,,Δ), where δ and Δ are the minimum and the maximum degree of G respectively. Then tvs(G)=max{δ+nδδ+1,δ+nδ+nδ+1δ+2,,δ+i=δΔniΔ+1}.

Conjecture 1 has been verified for trees [Citation3], for complete graphs and complete bipartite graphs [Citation5,6], for hexagonal grid graphs [Citation7] , for toroidal grid [Citation8], for generalized prism [Citation9], for strong product of cycles and paths [Citation10], for categorical product of two cycles [Citation11], for zigzag graphs [Citation12] and for strong product of two paths [Citation13]. For more results see [Citation14–18].

Conjecture 2 has been verified for trees [Citation4], for Cartesian and strong product of two paths in [Citation19].

Combining both total edge irregularity strength and total vertex irregularity strength notions, Marzuki et al. [Citation20] introduced a new irregular total k-labeling of a graph G, which is required to be at the same time both vertex and edge irregular. The minimum value of k for which such labeling exist is called total irregularity strength of graph and is denoted by ts(G). Besides that, they determined the total irregularity strength of cycles and paths. Marzuki, et al. [Citation20] have given a lower bond of ts(G) as follows. (1) For every graph G,ts(G)max{tes(G),tvs(G)}.(1) Ramdani and Salman [Citation21] showed that the lower bound in (1) for some Cartesian product graphs is tight. In [Citation22], Ahmad et al. found the exact value of total irregularity strength of generalized Petersen graph.

In the present paper, we determine the exact value of the total irregularity strength for Cartesian and strong product of two paths.

2 Total irregularity strength for Cartesian product of two paths

A Cartesian product H1H2 of two graphs H1 and H2 is the graph with the vertex set V(H1)×V(H2) and the vertex (a,b) is adjacent to the vertex (c,d) if and only if a=c and b is adjacent to d or b=d and a is adjacent to c.

In [Citation21] Ramdani and Salman found the exact value of ts(P2Pn). In the next theorem we determine the exact value of total irregularity strength of P3Pn.

Theorem 2.1

Let n7. Then ts(P3Pn)=5n13.

Proof

Let P3=(x1,x2,x3) and Pn=(y1,y2,,yn). Let G=P3Pn. Clearly |V(G)|=3n and |E(G)|=5n3. It follows from Theorems 1.1 and 1.2 that tes(G)2n13 and tvs(G)3n+25. From Eq. (1) we get ts(G)5n13. Now let k=5n13. To prove the reverse inequality we define ϕ:V(G)E(G){1,2,,k} as follows. ϕ(x1,yi)=1,ϕ(x3,yi)=k,for 1in,For 1in1 ϕ((x1,yi)(x1,yi+1))=i,

Case 1. n0(mod6).

ϕ(x2,yi)=n, ϕ((x1,yi)(x2,yi))=n+1i, ϕ((x3,yi)(x3,yi+1))=ki, ϕ((x2,yi)(x3,yi))=n3,fori=1n3+i,for2in ϕ((x2,yi)(x2,yi+1))=n+1,fori=1n+1i,for2in1.In this case the weights of the edges and the vertices are given by:

wt((x1,yi)(x2,yi))=2n+2i, wt((x1,yi)(x1,yi+1))=2+i, wt((x3,yi)(x3,yi+1))=3ki, wt((x2,yi)(x3,yi))=k+4n3,fori=1k+4n3+i,for2in wt(x1,yi)=n+1+i,for1in1n+1,fori=n wt(x2,yi)=10n3+1,fori=113n3+1,fori=213n3+42i,for3in17n3+3,fori=n wt(x3,yi)=11n31,fori=116n3+1i,for2in111n3+1,fori=n wt((x2,yi)(x2,yi+1))=3n+1,fori=13n+1i,for2in1.

Case 2. n1(mod6).

ϕ(x2,yi)=n, ϕ((x1,yi)(x2,yi))=n+1i, ϕ((x2,yi)(x3,yi))=n13+i,for1in24n13,fori=n14n43,fori=n ϕ((x2,yi)(x2,yi+1))=n1,fori=1n,fori=2n+1i,for3in1 ϕ((x3,yi)(x3,yi+1))=k,fori=1ki,for2in3k1i,forn2in1.In this case the weights of the edges and the vertices are given by:

wt((x1,yi)(x2,yi))=2n+2i, wt((x1,yi)(x1,yi+1))=2+i, wt((x2,yi)(x3,yi))=k+4n13+i,for1in2k+7n13,fori=n1k+7n43,fori=n wt(x1,yi)=n+1+i,for1in1n+1,fori=n wt(x2,yi)=10(n1)3+3,fori=113(n1)3+6i,for2i313(n1)3+82i,for4in27(n1)3+9,fori=n17(n1)3+4,fori=n wt(x3,yi)=11(n1)3+5,fori=116(n1)3+6,fori=216(n1)3+7i,for3in316n133+5i,forn2in111(n1)3+3,fori=n wt((x2,yi)(x2,yi+1))=3n1,fori=13n,fori=23n+1i,for3in1 wt((x3,yi)(x3,yi+1))=3k,fori=13ki,for2in33k1i,forn2in1.

Case 3. n2,5(mod6).

ϕ((x3,yi)(x3,yi+1))=k+1i, ϕ(x2,yi)=n+2,fori=1n,for2in1n1,fori=n ϕ((x1,yi)(x2,yi))=n2,fori=1n+1i,for2in12,fori=n ϕ((x2,yi)(x3,yi))=n23,fori=1n23+1+i,for2in14(n2)3+4,fori=n ϕ((x2,yi)(x2,yi+1))=n3,fori=1n,fori=2n+1i,for3in23,fori=n1.In this case the weights of the edges and the vertices are given by:

wt((x1,yi)(x2,yi))=2n+2i, wt((x2,yi)(x3,yi))=3n+i, wt((x1,yi)(x1,yi+1))=2+i, wt((x3,yi)(x3,yi+1))=3k+1i, wt(x1,yi)=n,fori=1n+1+i,for2in1n+2,fori=n wt(x2,yi)=10(n2)3+3,fori=113(n2)3+5+i,for2i313(n2)3+132i,for4in213n203+122i,forn1in wt(x3,yi)=11(n2)3+6,fori=116(n2)3+13i,for2in111(n2)3+10,fori=n wt((x2,yi)(x2,yi+1))=3n1,fori=13n,fori=23n+1i,for3in1.

Case 4. n3(mod6).

ϕ(x2,yi)=n, ϕ((x1,yi)(x2,yi))=n+1i, ϕ((x2,yi)(x3,yi))=n3+i, ϕ((x3,yi)(x3,yi+1))=k+1i, ϕ((x2,yi)(x2,yi+1))=n1,fori=1n,fori=2n+1i,for3in1.In this case the weights of the edges and the vertices are given by:

wt((x1,yi)(x2,yi))=2n+2i, wt((x2,yi)(x3,yi))=k+4n3+i, wt((x1,yi)(x1,yi+1))=2+i, wt((x3,yi)(x3,yi+1))=3k+1i, wt(x1,yi)=n+1+i,for1in1n+1,fori=n wt(x2,yi)=10n3,fori=113n3+2i,for2i313n3+42i,for4in17n3+3,fori=n wt(x3,yi)=11n3+1,fori=116n3+3i,for2in111n3+2,fori=n wt((x2,yi)(x2,yi+1))=3n1,fori=13n,fori=23n+1i,for3in1.

Case 5. n4(mod6).

ϕ(x2,yi)=n, ϕ((x1,yi)(x2,yi))=n+1i, ϕ((x2,yi)(x2,yi+1))=n+1i, ϕ((x3,yi)(x3,yi+1))=k,fori=1ki,for2in3k1i,forn2in1 ϕ((x2,yi)(x3,yi))=n13+i,for1in24n13,fori=n14n43,fori=n.In this case the weights of the edges and the vertices are given by:

wt((x1,yi)(x2,yi))=2n+2i, wt((x2,yi)(x2,yi+1))=3n+1i, wt((x1,yi)(x1,yi+1))=2+i, wt((x2,yi)(x3,yi))=k+4n13+i,for1in2k+7n13,fori=n1k+7n43,fori=n wt(x1,yi)=n+1+i,for1in1n+1,fori=n wt(x2,yi)=10(n1)3+4,fori=113(n1)3+82i,for2in27(n1)3+9,fori=n17(n1)3+4,fori=n wt(x3,yi)=11(n1)3+5,fori=116(n1)3+6,fori=216(n1)3+7i,for3in316n133+5i,forn2in111(n1)3+3,fori=n wt((x3,yi)(x3,yi+1))=3k,fori=13ki,for2in33k1i,forn2in1.It is easy to check that there are no two edges of the same weight and there are no two vertices of the same weight. So ϕ is a totally irregular total klabeling. We conclude that ts(P3Pn)=7n13. This completes the proof.

Theorem 2.2

Let n6. Then ts(P4Pn)=7n23.

Proof

Let P4=(x1,x2,x3,x4) and Pn=(y1,y2,,yn). Let G=P4Pn. Clearly |V(G)|=4n and |E(G)|=7n4. It follows from Theorems 1.1 and 1.2 that tes(G)7n23 and tvs(G)4n+25. From Eq. (1) we get ts(G)7n23. Now let k=7n23. To prove the reverse inequality we define ϕ:V(G)E(G){1,2,,k} as follows.

ϕ(x1,yi)=i, wt((x2,yi)(x3,yi))=3n+i, wt((x3,yi)(x4,yi))=5n2+2i, ϕ((x1,yi)(x2,yi))=1,for1in12,fori=n wt(x1,yi)=3,fori=13+i,for2in1n+3,fori=n.For 1in1 ϕ((x1,yi)(x1,yi+1))=1,wt((x1,yi)(x1,yi+1))=2+2i,wt((x3,yi)(x3,yi+1))=4n+i.

Case 1. n0(mod6).

ϕ(x2,yi)=i, ϕ(x3,yi)=kn+i, ϕ(x4,yi)=kn+i, ϕ((x2,yi)(x3,yi))=5n3i, ϕ((x3,yi)(x4,yi))=k2, ϕ((x3,yi)(x3,yi+1))=4n31i, ϕ((x4,yi)(x4,yi+1))=k2, ϕ((x2,yi)(x2,yi+1))=2n2,fori=12ni,for2in1.In this case the weights of the edges and the vertices are given by:

wt((x4,yi)(x4,yi+1))=5n1+2i, wt((x1,yi)(x2,yi))=1+2i,for1in12n+2,fori=n wt(x2,yi)=11n31,fori=117n33,fori=217n3+22i,for3in18n3+3,fori=n wt(x3,yi)=20n34,fori=124n332i,for2in117n32,fori=n wt(x4,yi)=18n33,fori=125n36+i,for2in121n34,fori=n wt((x2,yi)(x2,yi+1))=2n+1,fori=12n+1+i,for2in1.

Case 2. n1(mod6).

ϕ(x2,yi)=i, ϕ(x3,yi)=kn+i, ϕ(x4,yi)=kn+i, ϕ((x3,yi)(x3,yi+1))=4(n1)3+1i, ϕ((x3,yi)(x4,yi))=k1, ϕ((x2,yi)(x3,yi))=5(n1)3+2i, ϕ((x4,yi)(x4,yi+1))=k1, ϕ((x2,yi)(x2,yi+1))=2n2,fori=12ni,for2in1.In this case the weights of the edges and the vertices are given by:

wt((x4,yi)(x4,yi+1))=5n1+2i, wt((x1,yi)(x2,yi))=1+2i,for1in12n+2,fori=n wt(x2,yi)=11(n1)3+3,fori=117(n1)3+3,fori=217(n1)3+82i,for3in18(n1)3+6,fori=n wt(x3,yi)=20(n1)3+4,fori=124(n1)3+72i,for2in117(n1)3+5,fori=n wt(x4,yi)=18(n1)3+4,fori=125(n1)3+4+i,for2in121(n1)3+4,fori=n wt((x2,yi)(x2,yi+1))=2n+1,fori=12n+1+i,for2in1.

Case 3. n2(mod6).

ϕ(x2,yi)=i, ϕ(x3,yi)=kn+i, ϕ(x4,yi)=kn+i, ϕ((x2,yi)(x3,yi))=5(n2)3+4i, ϕ((x3,yi)(x4,yi))=k, ϕ((x3,yi)(x3,yi+1))=4(n2)3+3i, ϕ((x4,yi)(x4,yi+1))=k, ϕ((x2,yi)(x2,yi+1))=2n2,fori=12ni,for2in1.In this case the weights of the edges and the vertices are given by:

wt((x4,yi)(x4,yi+1))=5n1+2i, wt((x1,yi)(x2,yi))=1+2i,for1in12n+2,fori=n wt(x2,yi)=11(n2)3+7,fori=117(n2)3+9,fori=217(n2)3+142i,for3in18(n2)3+9,fori=n wt(x3,yi)=20(n2)3+12,fori=124(n2)3+172i,for2in117(n2)3+12,fori=n wt(x4,yi)=18(n2)3+11,fori=125(n2)3+14+i,for2in121(n2)3+12,fori=n wt((x2,yi)(x2,yi+1))=2n+1,fori=12n+1+i,for2in1.

Case 4. n3(mod6).

ϕ(x2,yi)=i, ϕ(x3,yi)=kn+i, ϕ(x4,yi)=kn+i, ϕ((x2,yi)(x3,yi))=5(n3)3+5i, ϕ((x3,yi)(x4,yi))=k2, ϕ((x3,yi)(x3,yi+1))=4(n3)3+3i, ϕ((x4,yi)(x4,yi+1))=k2,for1in2k1,fori=n1 ϕ((x2,yi)(x2,yi+1))=2n2,fori=12ni,for2in1.In this case the weights of the edges and the vertices are given by: wt((x1,yi)(x2,yi))=1+2i,for1in12n+2,fori=n wt(x2,yi)=11(n3)3+10,fori=117(n3)3+14,fori=217(n3)3+192i,for3in18(n3)3+10,fori=n wt(x3,yi)=20(n3)3+16,fori=124(n3)3+212i,for2in117(n3)3+15,fori=n wt(x4,yi)=18(n3)3+15,fori=125(n3)3+19+i,for2in228(n3)3+22,fori=n121(n3)3+18,fori=n wt((x2,yi)(x2,yi+1))=2n+1,fori=12n+1+i,for2in1 wt((x4,yi)(x4,yi+1))=5n1+2i,for1in23k2,fori=n1.

Case 5. n4(mod6).

ϕ(x2,yi)=i, ϕ(x3,yi)=kn+i, ϕ(x4,yi)=kn+i, ϕ((x2,yi)(x3,yi))=5(n4)3+7i, ϕ((x3,yi)(x4,yi))=k1, ϕ((x3,yi)(x3,yi+1))=4(n4)3+5i, ϕ((x4,yi)(x4,yi+1))=k1,for1in2k,fori=n1 ϕ((x2,yi)(x2,yi+1))=2n2,fori=12ni,for2in1.

In this case the weights of the edges and the vertices are given by: wt((x1,yi)(x2,yi))=1+2i,for1in12n+2,fori=n wt(x2,yi)=11(n4)3+14,fori=117(n4)3+20,fori=217(n4)3+252i,for3in18(n4)3+14,fori=n wt(x3,yi)=20(n4)3+24,fori=124(n4)3+312i,for2in117(n4)3+22,fori=n wt(x4,yi)=18(n4)3+22,fori=125(n4)3+29+i,for2in228(n4)3+33,fori=n121(n4)3+26,fori=n wt((x4,yi)(x4,yi+1))=5n1+2i,for1in23k1,fori=n1 wt((x2,yi)(x2,yi+1))=2n+1,fori=12n+1+i,for2in1.

Case 6. When n5(mod6). ϕ(x2,yi)=i,for1in1n1,fori=n ϕ(x3,yi)=kn+1+i,for1in1k,fori=n ϕ(x4,yi)=kn+1+i,for1in1k,fori=n ϕ((x2,yi)(x3,yi))=5(n5)3+8i,for1in12(n5)3+5,fori=n ϕ((x3,yi)(x4,yi))=k2,for1in1k,fori=n ϕ((x3,yi)(x3,yi+1))=4(n5)3+5i,for1in2n53+2,fori=n1 ϕ((x4,yi)(x4,yi+1))=k2,for1in2k1,fori=n1 ϕ((x2,yi)(x2,yi+1))=2n1,fori=12ni,for2in2n+2,fori=n11. In this case the weights of the edges and the vertices are given by:

wt((x1,yi)(x2,yi))=1+2i, wt((x2,yi)(x2,yi+1))=2n+1+i, wt((x4,yi)(x4,yi+1))=5n1+2i, wt(x2,yi)=11(n5)3+18,fori=117(n5)3+302i,for2in211(n5)3+23,fori=n18(n5)3+18,fori=n wt(x3,yi)=20(n5)3+28,fori=124(n5)3+352i,for2in218(n5)3+28,fori=n117(n5)3+29,fori=n wt(x4,yi)=18(n5)3+26,fori=125(n5)3+34+i,for2in228(n5)3+39,fori=n121(n5)3+32,fori=n.

It is easy to check that there are no two edges of the same weight and there are no two vertices of the same weight. So ϕ is a totally irregular total klabeling. We conclude that ts(P4Pn)=7n23. This completes the proof.

3 Total irregularity strength for strong product of two paths

The strong product G1G2 of graphs G1 and G2 has as vertices the pairs (a,b) where aV(G1) and bV(G2). Moreover vertices (a1,b1) and (a2,b2) are adjacent if either a1a2 is an edge of G1 and b1=b2 or if b1b2 is an edge of G2 and a1=a2 or if a1a2 is an edge of G1 and b1b2 is an edge of G2. In the next theorem we determined the exact value of total irregularity strength of P3Pn.

Theorem 3.1

Let n6. Then ts(P3Pn)=9n53.

Proof

Let P4=(x1,x2,x3) and Pn=(y1,y2,,yn). Let G=P3Pn. Clearly |V(G)|=3n and |E(G)|=9n7. It follows from Theorems 1.1 and 1.2 that tes(G)9n53 and tvs(G)2n+56. From Eq. (1) we get ts(G)9n53. Now let k=9n53. To prove the reverse inequality we define ϕ:V(G)E(G){1,2,,k} as follows.

ϕ(x1,yi)=1, ϕ(x2,yi)=n1+i, ϕ(x3,yi)=k, ϕ((x1,yi)(x2,yi))=1, ϕ((x2,yi)(x3,yi))=1, ϕ((x2,yi)(x1,yi+1))=n+1, ϕ((x1,yi)(x2,yi+1))=2n1, ϕ((x2,yi)(x2,yi+1))=3ni, ϕ((x2,yi)(x3,yi+1))=2n, ϕ((x3,yi)(x2,yi+1))=3n2, ϕ((x1,yi)(x1,yi+1))=i,for1in3n1,fori=n2n2,fori=n1 ϕ((x3,yi)(x3,yi+1))=2n2+i,for1in1k1,fori=n.In this case the weights of the edges and the vertices are given by:

wt((x1,yi)(x2,yi))=n+1+i, wt((x2,yi)(x3,yi))=4n1+i, wt((x1,yi)(x2,yi+1))=3n+i, wt((x2,yi)(x1,yi+1))=2n+1+i, wt((x2,yi)(x2,yi+1))=5n1+i, wt((x2,yi)(x3,yi+1))=k+3n1+i, wt((x3,yi)(x2,yi+1))=k+4n2+i, wt(x1,yi)=2n+2,fori=13n+1+2i,for2in34n+i,fori=n2,n12n+1,fori=n wt(x2,yi)=7n+2,fori=115ni,for2in19n1,fori=n wt(x3,yi)=8n3,fori=112n7+2i,for2in214n8,fori=n18n2,fori=n wt((x1,yi)(x1,yi+1))=2+i,for1in3n+1,fori=n2n,fori=n1 wt((x3,yi)(x3,yi+1))=2k+2n2+i,for1in23k1,fori=n1.It is easy to check that there are no two edges of the same weight and there are no two vertices of the same weight. So ϕ is a totally irregular total k-labeling. We conclude that ts(P3Pn)=9n53. This completes the proof.

Conclusion:

In this paper we determined the exact value of the totally irregularity strength for P3Pn, P4Pn and P3Pn. We conclude the paper with following open problems.

Open Problem 3.2

Determine the exact value of totally irregularity strength for PmPn, ifn3andm5.

Open Problem 3.3

Determine the exact value of totally irregularity strength for PmPn, ifn3andm4.

Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments and suggestions that improved this paper.

This research is supported by the Start-Up Research Grant 2016 of United Arab Emirates University (UAEU), Al Ain, United Arab Emirates via Grant No. G00002233, UPAR Grant of UAEU via Grant No. G00002590 and by the Summer Undergraduate Research Experience (SURE) plus 2017 research Grant via Grant No. G00002412.

References

  • ChartrandG.JacobsonM.S.LehelJ.OellermannO.R.RuizS.SabaF., Irregular networks Congr. Numer. 641988 187–192
  • BačaM.JendroľS.MillerM.RyanJ., On irregular total labellings Discrete Math. 3072007 1378–1388
  • IvančoJ.JendroľS., Total edge irregularity strength of trees Discuss. Math. Graph Theory 262006 449–456
  • NurdinE.T. BaskoroSalmanA.N.M.GaosN.N., On total vertex irregularity strength of trees Discrete Math. 3102010 3043–3048
  • JendroľS.MiškufJ.SotákR., Total edge irregularity strength of complete and complete bipartite graphs Electron. Notes Discrete Math. 282007 281–285
  • JendroľS.MiškufJ.SotákR., Total edge irregularity strength of complete graphs and complete bipartite graphs Discrete Math. 3102010 400–407
  • Al-MushaytO.AhmadA.SiddiquiM.K., On the total edge irregularity strength of hexagonal grid graphs Australas. J. Combin. 532012 263–271
  • ChunlingT.XiaohuiL.YuanshengY.LipingW., Irregular total labellings of Cm□Cn Util. Math. 812010 3–13
  • BačaM.SiddiquiM.K., Total edge irregularity strength of generalized prism Appl. Math. Comput. 2352014 168–173
  • AhmadA.Al MushaytO.SiddiquiM.K., Total edge irregularity strength of strong product of cycles and paths U.P.B. Sci. Bull. Ser. A. 76 4 2014 147–156
  • AhmadA.BačaM.SiddiquiM.K., On edge irregular total labeling of categorical product of two cycles Theor. Comput. Syst. 542014 1–12
  • AhmadA.SiddiquiM.K.AfzalD., On the total edge irregularity strength of zigzag graphs Australas. J. Combin. 542012 141–149
  • AhmadA.BačaM.BashirY.SiddiquiM.K., Total edge irregularity strength of strong product of two paths Ars Combin. 1062012 449–459
  • SiddiquiM.K., On irregularity strength of convex polytope graphs with certain pendent edges added Ars Combin. 1292016 199–210
  • SiddiquiM.K.BaskoroE.T. Nurdin, Total edge irregularity strength of disjoint union of Helm graphs J. Math. Fund. Sci. 45 2 2013 163–171
  • SiddiquiM.K., On total edge irregularity strength of categorical product of cycle and path AKCE Int. J. Graphs Combin. 9 1 2012 43–52
  • SiddiquiM.K., On edge irregularity strength of subdivision of star Sn Int. J. Math. Soft Comput. 2 1 2012 75–82
  • SiddiquiM.K.AfzalD.FaisalM.R., Total edge irregularity strength of accordion graphs J. Combin. Optim. 34 2 2017 534–544
  • BokharyS.A.H.AhmadA.ImranM., On vertex irregular total labeling of Cartesian product of two paths Util. Math. 902013 239–249
  • MarzukiC.C.SalmanA.N.M.MillerM., On the total irregularity strength on cycles and paths Far East J. Math. Sci. 82 1 2013 1–21
  • RamdaniR.SalmanA.N.M., On the total irregularity strength of some Cartesian product graphs AKCE Int. J. Graphs Combin. 10 2 2013 199–209
  • AhmadA.SiddiquiM.K.IbrahimM., On the total irregularity strength of generalized Petersen graph Math Rep. 18 68 2016 197–204