128
Views
7
CrossRef citations to date
0
Altmetric
Theoretical Paper

A normal approximation model for safety stock optimization in a two-echelon distribution system

, &
Pages 156-163 | Received 01 Sep 2007, Accepted 01 Oct 2008, Published online: 21 Dec 2017
 

Abstract

This paper presents an approximation model for the retailer replenishment lead-times in a two-echelon distribution system, and discusses its implementation for safety stock optimization in a one-warehouse and N-identical retailers system. The model assumes normality of demand and nominal lead times. It takes into account not only the averages of these parameters but also their variances. This approximation model is first tested on a two-echelon, one-warehouse and N-identical retailers system using discrete event simulation. It is then applied to optimize the safety stock in a two-echelon distribution system of a European market leader in the production and distribution of air conditioning equipment. Results of this implementation are analysed and discussed in detail.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.