19
Views
2
CrossRef citations to date
0
Altmetric
Theoretical Paper

Algorithms for partitioning of large routing networks

, , &
Pages 1159-1167 | Received 01 Jan 2008, Accepted 01 Feb 2009, Published online: 21 Dec 2017
 

Abstract

Partitioning of large networks is vital for decentralized management and control. This paper presents two algorithms called ‘Hierarchical Recursive Progression-1’ (HRP-1) and ‘Hierarchical Recursive Progression-2’ (HRP-2) for partitioning of large networks into subnetworks of limited size with very few interconnections between them. In other words, we are trying to maximize the internal nodes and minimize the external connections of the subnetworks. The restriction on the size and the external connections is obtained by comparison against a user-defined value for the size of the subnetwork and for external connections via a term called density. The density of a subnetwork is defined as the ratio of the number of external connections and the size of the subnetwork. The two algorithms presented in the paper are based on the principle of subnetwork clustering. At the start of the algorithms, the number of subnetworks is equal to the total number of nodes of the network with each subnetwork containing a single node. Later, subnetworks are merged at various runs of the algorithm to form new subnetworks using connectivity, density and size criteria. The algorithms terminate when all the subnetworks satisfy a user-defined size and density limit. The difference between the algorithms HRP-1 and HRP-2 lies in the definition of density of subnetworks and the way through which the subnetworks are grouped at consecutive iterations of the algorithm. Note that the number of nodes inside the subnetworks never violates the size limit, thereby ensuring even distribution of load on the partitions obtained. Finally, the two algorithms are compared and tested on randomly generated graphs and a part of Paris road Network.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.