20
Views
2
CrossRef citations to date
0
Altmetric
Theoretical Paper

Unbounded knapsack problem with controllable rates: the case of a random demand for items

Pages 594-604 | Received 01 Jul 2002, Accepted 01 Jan 2003, Published online: 21 Dec 2017
 

Abstract

This paper focuses on a dynamic, continuous-time control generalization of the unbounded knapsack problem. This generalization implies that putting items in a knapsack takes time and has a due date. Specifically, the problem is characterized by a limited production horizon and a number of item types. Given an unbounded number of copies of each type of item, the items can be put into a knapsack at a controllable production rate subject to the available capacity. The demand for items is not known until the end of the production horizon. The objective is to collect items of each type in order to minimize shortage and surplus costs with respect to the demand. We prove that this continuous-time problem can be reduced to a number of discrete-time problems. As a result, solvable cases are found and a polynomial-time algorithm is suggested to approximate the optimal solution with any desired precision.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.