41
Views
10
CrossRef citations to date
0
Altmetric
Theoretical Paper

Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm

, &
Pages 382-389 | Received 01 Jan 2002, Accepted 01 Sep 2003, Published online: 21 Dec 2017
 

Abstract

We present an exact algorithm for solving the generalized minimum spanning tree problem (GMST). Given an undirected connected graph and a partition of the graph vertices, this problem requires finding a least-cost subgraph spanning at least one vertex out of every subset. In this paper, the GMST is formulated as a minimum spanning tree problem with side constraints and solved exactly by a branch-and-bound algorithm. Lower bounds are derived by relaxing, in a Lagrangian fashion, complicating constraints to yield a modified minimum cost spanning tree problem. An efficient preprocessing algorithm is implemented to reduce the size of the problem. Computational tests on a large set of randomly generated instances with as many as 250 vertices, 1000 edges, and 25 subsets provide evidence that the proposed solution approach is very effective.

Acknowledgements

We would like to thank two anonymous referees for their valuable suggestions that have led to several improvements.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.