128
Views
41
CrossRef citations to date
0
Altmetric
Theoretical Paper

Scheduling a single batch-processing machine with arbitrary job sizes and incompatible job families: An ant colony framework

&
Pages 1269-1280 | Received 01 Apr 2006, Accepted 01 Mar 2007, Published online: 21 Dec 2017
 

Abstract

This paper investigates the first attempt on the batch-processing machine scheduling problem, where the machine can process multiple jobs simultaneously, using an ant colony optimization metaheuristic. We consider the scheduling problem of a single batch-processing machine with incompatible job families and the performance measure of minimizing total weighted completion time. Jobs of a given family have an identical processing time and are characterized by arbitrary sizes and weights. Based on a number of developed heuristic approaches, we propose an ant colony framework (ACF) in two versions, which are distinguished by the type of embedded heuristic information. Each version is also investigated in two formats, that is the pure ACF and the hybridized ACF. To verify the performance of our framework, comparisons are made based on using a set of well-known existing heuristic and meta-heuristic algorithms taken from the literature, on a diverse set of artificially generated test problem instances. Computational results show the high performance of the proposed framework and signify its ability to outperform the comparator algorithms in most cases as the problem size increases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.