57
Views
0
CrossRef citations to date
0
Altmetric
Reasearch Articles

Effect of ground undulation and mounted vehicle velocity variation on stepped frequency continuous wave GPR data

, , , &
Pages 81-88 | Received 02 Feb 2016, Accepted 27 Oct 2016, Published online: 06 Dec 2018
 

Abstract

This paper describes a method to generate dataset on stepped frequency continuous wave (SFCW) ground penetrating radar (GPR) for land mine detection. Probability of target detection as well as accuracy of GPR is hindered by ground undulations and GPR mounted vehicle velocity variation. This paper proposes a novel method of filtering out ground undulation effect by ground bounce removal filter and also mitigating GPR mounted vehicle velocity variations. This work also focuses on migration of simulated B-scan and C-scan data using Kirchhoff and F-K migration algorithms. The irregular surface condition of the ground or ground undulation is modelled and a ground bounce removal filter is developed to eliminate the effects of ground undulation. Non-uniform sampling of B-scan replicates the scenario of variation in velocity of the GPR mounted vehicle. The Kirchhoff and F-K migration algorithms applied to the outcome of ground bounce removal filter dataset results in no/less error with respect to true depth and position of the landmine in all possible scenarios. An interactive graphical user interface (GUI) for generating and testing the SFCW GPR data is also discussed in this paper.

This paper describes a method to generate dataset on stepped frequency continuous wave ground penetrating radar for land mine detection. A novel ground undulation and ground bounce removal filter has been proposed which mitigates the effects of vehicle velocity variations. Kirchhoff and F-K migration algorithms are applied to the filtered output.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.