Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 107, 1999 - Issue 3
69
Views
13
CrossRef citations to date
0
Altmetric
Research Article

A Computer Model for Describing the Effect of Urethral Afferents on Simulated Lower Urinary Tract Function

, , , &
Pages 223-235 | Published online: 03 Oct 2008
 

Abstract

A computer model of mechanical properties of the bladder, the urethra and the rhabdosphincter, as well as their neural control is presented in this paper. The model has a rather simple design and processes sensory information from both the bladder wall tension and urethral stretch. It is assumed that afferent signals from the urethra are involved in a sacral excitatory reflex and a supraspinal inhibitory reflex. Pressure and flow signals that resemble experimentally measured normal human behaviour could be simulated with this model. From these simulations the relation between the neural control mechanisms used in the model and the neural control mechanism in vivo cannot be judged entirely because similar behaviour could be simulated with models that are bas ed on different neural control mechanisms. Also behaviour that resembles detrusor overactivity was simulated with our model after an externally induced rise in detrusor pressure was added. Detrusor overactivity, sometimes in combination with urethral relaxation, can occur during a urodynamic investigation. A possible explanation for this detrusor overactivity might be that the micturition reflex is triggered by unknown disturbances and is inhibited immediately after by the same mechanism that normally ceases voiding. The described model provides such a mechanism. Based on these simulations, therefore, it is concluded that urethral afferent signals might be important in lower urinary tract control.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.