Publication Cover
Fragblast
International Journal for Blasting and Fragmentation
Volume 6, 2002 - Issue 1
11
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

The BLAST-CODE model – A Computer-Aided Bench Blast Design and Simulation System

Pages 85-103 | Published online: 09 Aug 2010
 

Abstract

Blast design is a critical factor dominating fragmentation and cost of actual bench blasts. However, due to the varying nature of rock properties and geology as well as free surface conditions, reliable theoretic formulae are still unavailable at present and in most cases blast design is carried out by personal experience. As an effort to find a more scientific and reliable tool for blast design, a computer-aided bench blast design and simulation system, the BLAST-CODE model, is developed for Shuichang surface mine, Mining Industry Company of the Capital Iron and Steel Corporation Beijing. The BLAST-CODE model consists of a database representing geological and topographical conditions of the mine and the modules Frag + and Disp + for blast design and prediction of resultant fragmentation and displacement of rock mass. The two modules are established in accordance with cratering theory qualitatively and modified quantitatively by regression of the data collected from 85 bench blasting practices conducted in 3 mines of the Shuichang surface mine. Blasting parameters are selected based upon quantitative and comprehensive evaluation on the effect of the factors such as rock properties, geology, free surface conditions and detonation characteristics of the explosive products in use. In order to ensure practicality and reliability of the system, the BLAST-CODE model allows automatic adjustment to the selected parameters such as burden B and spacing S as well as explosive charge amount Q of any blasthole under irregular topographic and/or varying blastability conditions of the rock mass to be blasted. Simulation of the BLAST-CODE model includes prediction of fragmentation and displacement that are demonstrated in terms of swell factor, characteristic rock size x c and size distribution coefficient n by Rossin-Ramler's equation, and 3-dimentional muck pile profile. The BLAST-CODE model also permits interactive parameter selection based on comparison of the predicted fragmentation and displacement as well as the cost for drilling, explosives, and accessories until the most effective option can be selected.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.