398
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

The effect of aerobic interval training and continuous training on exercise capacity and its determinants

, PhD, , PhD, , PhD, , PhD, , MD, , MD, , MD, , MD, , MD, , PhD, , MD, , PhD & , PhD show all
Pages 328-340 | Received 29 Oct 2015, Accepted 30 May 2016, Published online: 21 Mar 2017
 

Abstract

Objective We aimed to investigate (1) the effects of aerobic interval training (AIT) and aerobic continuous training (ACT) on (sub)maximal exercise measures and its determinants including endothelial function, muscle strength and cardiac autonomic function, and (2) the relationship between exercise capacity and these determinants.

Methods Two-hundred coronary artery disease (CAD) patients (58.4 ± 9.1 years) were randomized to AIT or ACT for 12 weeks. All patients performed a cardiopulmonary exercise test and endothelial function measurements before and after the intervention; a subpopulation underwent muscle strength and heart rate variability (HRV) assessments.

Results The VO2, heart rate and workload at peak and at first and second ventilatory threshold increased (P-time <0.001); the oxygen uptake efficiency slope (P-time <0.001) and half time of peak VO2 (P-time <0.001) improved. Endothelial function and heart rate recovery (HRR) at 1 and 2 min improved (P-time <0.001), while measures of muscle strength and HRV did not change. Both interventions were equally effective. Significant correlations were found between baseline peak VO2 and (1) quadriceps strength (r = 0.44; P < 0.001); (2) HRR at 2 min (r = 0.46; P < 0.001). Changes in peak VO2 correlated significantly with changes in (1) FMD (ρ = 0.17; P < 0.05); (2) quadriceps strength (r = 0.23; P < 0.05); (3) HRR at 2 min (ρ = 0.18; P < 0.05) and Total power of HRV (ρ = 0.41; P < 0.05).

Conclusions This multicentre trial shows equal improvements in maximal and submaximal exercise capacity, endothelial function and HRR after AIT and ACT, while these training methods seem to be insufficient to improve muscle strength and HRV. Changes in peak VO2 were linked to changes in all underlying parameters.

ACKNOWLEDGEMENTS

This work was funded by the Agency of Innovation by Science and Technology (IWT-project number 090870). VC is supported as a post-doctoral fellow by the Research Foundation Flanders (FWO). EVC is supported by the Research Foundation Flanders (FWO) as a senior clinical investigator.

CONFLICTS OF INTEREST

none.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.