8
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Electromotile performance of isolated outer hair cells during slow motile shortening

, &
Pages 547-551 | Received 08 Sep 2004, Accepted 09 Sep 2004, Published online: 19 Jul 2011
 

Abstract

Conclusion The electromotile performance of isolated OHCs does not seem to be dependent on slow motile shortening alone; other mechanisms, such as phosphorylation, are also involved.

Objective To elucidate the relationship between the magnitude of electromotile displacements of outer hair cells (OHCs) induced by mechanical or chemical stimulation over a reversible range, and magnitude of slow motile shortening.

Material and methods Isolated guinea pig OHCs were mechanically (0.6 μl/min perfusion of saline; n=4) or chemically and mechanically (0.6 μl/min perfusion of 12.5 mM KCl; n=4) stimulated in a glass microchamber to evoke slow motile shortening.

Results Combined mechanical and chemical stimulation evoked greater OHC shortening than mechanical stimulation alone. Both forms of stimulation resulted in reversible shortening. Electromotility was measured using low voltage (±35 mV) and higher voltage (up to ±240 mV) electrical pulses mimicking the receptor potential at different stages of cell shortening. The magnitude of electromotility decreased simultaneously with slow motile shortenings of OHCs. Irrespective of the character of the stimulus (mechanical or mechanical+chemical), the decrease in the magnitude of electromotility was dependent on the degree of cell shortening. Ocadaic acid, a protein phosphatase inhibitor, blocked slow motility and decreased the magnitude of electromotility.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.