48
Views
0
CrossRef citations to date
0
Altmetric
Microbiology and Fermentation Industry

Permeability and Selective Toxicity of Nitrofurane Compounds

Pages 520-525 | Received 16 Apr 1962, Published online: 09 Sep 2014
 

Abstract

The bacterial growth is inhibited by nitrofurane compounds, although the yeast growth is hardly affected. In relation to the selective toxicity of nitrofuranes for bacteria, the interaction between microbes (Escherichia coli, Staphylococcus aureus and bakers– yeast) and nitrofurane compounds (5-nitro-2-furfural semicarbazone and 5-nitro-2-furylacryl amide) was examined.

Apparently, in the bacterial suspension containing energy substrate, nitrofuranes are continuously reduced to corresponding aminofuranes, respectively. The velocity of the bacterial reduction at the growth inhibiting condition was evaluated as great as above 30 per cent of the limit of supplying velocity of coenzymes in the cell, the reduction velocity of such value is enough to inhibit the bacterial growth, because the electron transfer in the cell metabolism is disordered.

On the other hand, in the yeast suspension, the reduction velocity was negligibly small. The difference of the reduction ability between bacteria and yeast was seemingly owing to the fact that the permeability of the nitrofuranes differs by the kind of microbe so that it was concluded that the antimicrobial effect of nitrofuranes is limited by the permeability for the microbe cell.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.