318
Views
5
CrossRef citations to date
0
Altmetric
Biological Chemistry

Acid-stable α-Amylase of Black Aspergilli

Part II. Some General Properties
Part III. Separation of Acid-stable α-Amylase and Acid-unstable α-Amylase from the Same Mold Amylase Preparation

, , &
Pages 104-113 | Received 11 Aug 1967, Published online: 09 Sep 2014
 

Abstract

Some general properties of the acid-stable dextrinizing amylase of black Aspergillus were investigated comparing with those of Taka-amylase A. The mode of action on starch of this amylase was quite similar to that of Taka-amylase A. Saccharifying degree at red point in starch-iodine color reaction was 5.1% and the limit of starch saccharification was a little over 40 per cent calculated as glucose with both amylases. Maltase activity was absent. Degradation products in the course of starch hydrolysis were also quite similar and they mutarotated downward. So this amylase was decided to be α-type. Thermal stability of the acid-stable α-amylase was higher than that of Taka-amylase A. Its acid stability was much higher than that of Taka-amylase A. Taka-amylase A was inactivated completely at pH 2.2, 37°C, for 30 min, but the acid-stable α-amylase retained 87% of its original activity.

From the amylase preparation of black Aspergillus acid-stable α-amylase and acidunstable α-amylase were separated by gel filtration on sephadex G-100 column. From the acid-unstable α-amylase fraction this enzyme was purified by fractionations with rivanol and acetone, and finally obtained as a homogeneous protein after gel filtration with sephadex G-50. Comparison of some general properties between the two α-amylases was carried out. Catalytic action was quite similar with both enzymes, but dextrinizing unit per mg enzyme protein of the acid-unstable α-amylase was about 5.6 times as large as that of the acid-stable α-amylase. The acid-unstable α-amylase was less heat-stable than the acid-stable α-amylase. Acid stability and pH-activity curve were compared with both α-amylases. High stability of the acid-stable α-amylase in acidic condition was observed, but, in alkaline range, it was more sensitive than the acid-unstable α-amylase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.