92
Views
2
CrossRef citations to date
0
Altmetric
Biological Chemistry

Mechanism of Inactivation of Bacteriophage J1 by Glutathione

, , &
Pages 1707-1712 | Received 08 Feb 1973, Published online: 09 Sep 2014
 

Abstract

Mechanism of inactivation of a double-stranded DNA phage, phage Jl of Lactobacillus casei, by reduced form of glutathione (GSH) was studied.

Air (oxygen) bubbling, oxidizing agents and transition metal ions enhanced the rate of inactivation of the phage by GSH. Partial oxidation of GSH resulted in a more rapid rate of inactivation. In contrast, nitrogen bubbling, reducing agents, chelating agents and radical scavengers prevented the inactivation. Fully oxidized GSH had no phagocidal effect. These results indicate that the inactivating effect of GSH requires the presence of molecular oxygen and is caused by free radical involved in the mechanism of GSH oxidation.

The target of GSH in the phage particle was not the tail protein but DNA. GSH reacted with phage DNA and caused single-strand scissions in the DNA, as exhibited by alkaline sucrose gradient centrifugation; thus inactivating phage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.