6,660
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Calculating Collection Efficiencies for Electrostatic Precipitators

, &
Pages 610-616 | Published online: 13 Mar 2012
 

Abstract

The body of information presented In this paper is directed to those Individuals involved In research on, or the design of, electrostatic precipitators. A model for calculating collection efficiencies— one based solely on physical principles and, as a result, one requiring no prior Information from pilot plant or field testing—has been employed to generate performance curves for twelve Industries presently using electrostatic precipitators. These industries Include the electric power, cement, pulp and paper, steel, chemical, and petroleum industries. The performance curves describe the predicted collection efficiency as a function of preclpltator length, plate-to-plate spacing and average field strength, and are presented In graphical, tabular, and equation form. Wherever literature values for a particular Industry are available, comparisons are made between the collection efficiencies generated by the new model and those based on actual preclpltator performance. The two are generally found to be In reasonable agreement.

The use of the Deufsch-Anderson model for preclpltator design Is also discussed. Results from the new model demonstrate that collection efficiency Is sensitive to particle size distribution, a complication that cannot be easily treated In the Deutsch-Ander-son equation which, In Its unmodified form, requires the use of a single representative particle size. It is concluded that the new model Is potentially a more realistic and viable approach to the prediction of collection efficiencies and as such should prove to be a valuable aid in electrostatic preclpltator design.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.