546
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

The Impact of Gold Smelter Emissions on Vegetation and Soils of a Sub-Arctic Forest-Tundra Transition Ecosystem

, , &
Pages 133-137 | Published online: 14 Mar 2012
 

Abstract

Gold smelters near Yellowknife in Canada's Northwest Territories have emitted large quantities of sulfur dioxide and arsenic since inception of roasting in 1941. Although particulate wastes are well contained by baghouse fitters in the one remaining operating smelter, significant gaseous emissions continue. Soil and vegetation were sampled at 52 sites over an area of about 40 km radius from the source. Plant ecology was studied at 43 of those sites. After preliminary multi-element screening that indicated only arsenic was a serious persistent contaminant, x-ray fluorescence was used to measure arsenic content in sampled materials. The plant ecology data were synthesized into an Index of Vitality with numerical ratings of pertinent factors. In the marginal forests and rocky outcrops of the area, indicator species of vegetation permitted a division into zones of severe, moderate, mild, or no impact in order of increasing distance from the current center of emissions. Severe impact, including killing of trees, is local only. Analyses of foliage indicate little uptake of arsenic which, together with the presence of S02 symptoms, point to S02 as the main factor causing decline of vegetation. A separate study, abstracted here, supports this view by providing data that show a frequency of at least 2 significant fumigation episodes per growing season. Soil analyses indicate extremely high arsenic contamination near the stack. A monotonie pattern of dispersion yielded a function explainable in terms of rapid condensation of gaseous emissions. The relationship of arsenic in surface soil and vegetation to distance is approximately an inverse square.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.