819
Views
45
CrossRef citations to date
0
Altmetric
ARTICLE

Assessing Freshwater and Marine Environmental Influences on Life-Stage-Specific Survival Rates of Snake River Spring–Summer Chinook Salmon and Steelhead

, , &
Pages 121-138 | Received 23 Jun 2010, Accepted 01 Jul 2011, Published online: 30 Jan 2012
 

Abstract

Pacific salmon Oncorhynchus spp. from the Snake River basin experience a wide range of environmental conditions during their freshwater, estuarine, and marine residence, which in turn influence their survival rates at each life stage. In addition, researchers have found that juvenile out-migration conditions can influence subsequent survival during estuarine and marine residence, a concept known as the hydrosystem-related, delayed-mortality hypothesis. In this analysis, we calculated seasonal, life-stage-specific survival rate estimates for Snake River spring–summer Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss and conducted multiple-regression analyses to identify the freshwater and marine environmental factors associated with survival at each life stage. We also conducted correlation analyses to test the hydrosystem-related, delayed-mortality hypothesis. We found that the freshwater variables we examined (the percentage of river flow spilled over out-migration dams and water transit time) were important for characterizing the variation in survival rates not only during freshwater out-migration but also during estuarine and marine residence. Of the marine factors examined, we found that the Pacific Decadal Oscillation index was the most important variable for characterizing the variation in the marine and cumulative smolt-to-adult survival rates of both species. In support of the hydrosystem-related, delayed-mortality hypothesis, we found that freshwater and marine survival rates were correlated, indicating that a portion of the mortality expressed after leaving the hydrosystem is related to processes affected by downstream migration conditions. Our results indicate that improvements in life-stage-specific and smolt-to-adult survival may be achievable across a range of marine conditions through increasing spill percentages and reducing water transit times during juvenile salmon out-migration.

Received June 23, 2010; accepted July 1, 2011

ACKNOWLEDGMENTS

The opinions expressed in this paper are those of the authors and do not necessarily reflect those of the U.S. Fish and Wildlife Service. We thank three anonymous reviewers and the journal editor Richard Beamish for providing helpful review comments. We thank David Hines for creating the map.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.