160
Views
12
CrossRef citations to date
0
Altmetric
ARTICLE

Exploring Mechanisms Underlying Sex-Specific Differences in Mortality of Lake Michigan Bloaters

, , , &
Pages 204-214 | Received 17 Sep 2010, Accepted 24 Aug 2011, Published online: 01 Feb 2012
 

Abstract

Sex-specific differences in mortality rates have been observed among freshwater and marine fish taxa, and underlying mechanisms can include sex-specific differences in (1) age at maturity, (2) growth rate, or (3) activity or behavior during the spawning period. We used a long-term (1973–2009) Lake Michigan data set to evaluate whether there were sex-specific differences in catch per unit effort, mortality, age at maturity, and length at age in bloaters Coregonus hoyi. Because bloater population biomass varied 200-fold during the years analyzed, we divided the data into three periods: (1) 1973–1982 (low biomass), (2) 1983–1997 (high biomass), and (3) 1998–2009 (low biomass). Mortality was higher for males than for females in periods 2 and 3; the average instantaneous total mortality rate (Z) over these two periods was 0.71 for males and 0.57 for females. Length at age was slightly greater (2–6%) for females than for males in different age-classes (3–6 years) during each period. Age at maturity was earlier for males than for females in periods 1 and 2, but the mean difference was only 0.2–0.4 years. To test the hypothesis that somatic lipids declined more in males than in females during spawning (perhaps due to increased activity or reduced feeding), we estimated sex-specific percent somatic lipids for fish sampled in 2005–2006 and 2007–2008. During 2005–2006, somatic lipids declined from prespawning to postspawning for males but were unchanged for females. During 2007–2008, however, somatic lipids were unchanged for males, whereas they increased for females. We found that sex-specific differences in Z occurred in the Lake Michigan bloater population, but our hypotheses that sex-specific differences in maturity and growth could explain this pattern were generally unsupported. Our hypothesis that somatic lipids in males declined during spawning at a faster rate than in females will require additional research to clarify its importance.

Received September 17, 2010; accepted August 24, 2011

ACKNOWLEDGMENTS

Dan Anderson and Paragon Fish Corp. were incredibly helpful in providing bloaters for lipid analyses during the winter months. We acknowledge the critical role played by the many biologists, technicians, and vessel crew from the USGS Great Lakes Science Center in maintaining the long-term time series used in these analyses. This article was improved by the constructive comments of Darryl Hondorp, Justin Londer, Elizabeth Puchala, and three anonymous reviewers. Use of trade, product, or firm names does not imply endorsement by the U.S. Government. This article is Contribution 1680 of the USGS Great Lakes Science Center.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.