22
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A D-Carnitine Dehydrogenase Electrode For The Assessment Of Enantiomeric Purity Of L-Carnitine Preparations

Pages 1079-1089 | Published online: 27 Feb 2008
 

ABSTRACT

The enantiomeric purity of pharmaceutical L-carnitine preparations can be assessed within 60 seconds using a highly selective bienzyme electrode. D-carnitine dehydrogenase from Agmbacterium is highly specific for the non-physiological D-enantiomer and was therefore used as the recognition element. NADH produced in the primary reaction was oxidized by salicylate hydroxylase (EC 1.14.13.1) in an oxygen and salicylate dependent reaction. The consumption of oxygen was monitored with a miniature Clark-electrode. A linear calibration graph from 0.01 mM through 0.6 mM D-carnitine was obtained in phosphate buffer pH 8 comprising 0.5 mM concentrations of the cosubstrates NAD and salicylate. The sensitivity for DL-carnitine was exactly 50% of the respective value for pure D-carnitine, while L-carnitine and ascorbic acid, a common interferent, gave no response at all. Mixtures of both enantiomers containing 1% and 3% D-carnitine, respectively, could be distinguished from each other and from pure (i.e. >98 %) L-carnitine preparations with the new sensor. The biosensor method is faster and less laborious than established HPLC and 1H-NMR methods since it requires no chemical derivatization. The lower detection limit was 10-fold reduced as compared with a recently published enzymatic assay.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.