89
Views
7
CrossRef citations to date
0
Altmetric
Bioanalytical

Direct Electrochemistry and Catalytic Activity of Hemoglobin and Myoglobin Entrapped in PEG Film

, , , &
Pages 2103-2115 | Received 01 Mar 2005, Accepted 24 Jun 2005, Published online: 02 Feb 2007
 

Abstract

Direct electrochemistry and electrocatalysis of two heme proteins, hemoglobin (Hb) and myoglobin (Mb), incorporated in polyethylene glycol (PEG) films, were studied by cyclic voltammetry. The two proteins exhibited a pair of well‐defined, quasi‐reversible cyclic voltammetric peaks with the apparent formal potential at about −0.21 V (Hb) and −0.22 V (Mb), respectively, vs. saturated calomel electrode (SCE) in pH 5.0 acetate buffer solution, characteristic of the h eme Fe(III)/Fe(II) redox couples, indicating enhanced electron transfer between the proteins and the substrate electrode in the PEG film environment. The protein–PEG films could also exhibit excellent stability. Meanwhile, positions of Soret absorption band of the proteins in the PEG films suggested that the heme proteins kept their secondary structure similar to their native state in the medium pH range. Oxygen, trichloroacetic acid, nitric oxide, and hydrogen peroxide could all be catalytically reduced by Hb or Mb in PEG films.

Acknowledgments

We greatly appreciate the support of the National Natural Science Foundation and the Ministry of Education, P.R. China, for this research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.