297
Views
19
CrossRef citations to date
0
Altmetric
Pharmaceutical Analysis

Study of Spectrophotometric Determination of Amoxicillin Using Sodium 1,2‐Naphthoquinone‐4‐Sulfonate as the Chemical Derivative Chromogenic Reagent

&
Pages 763-775 | Received 04 Nov 2005, Accepted 16 Nov 2005, Published online: 02 Feb 2007
 

Abstract

A simple and sensitive spectrophotometric method is described for determination of amoxicillin. The method is based on a nucleophilic substitution reaction to measure the pink compound produced by the reaction of amoxicillin with sodium 1,2‐naphthoquinone‐4‐sulfonate in pH 9.00 buffer solution. The stoichiometric ratio of the compound is 1:1, and its maximum absorption wavelength is at 468 nm, ε=3.91×103 L · mol−1 · cm−1. The Beer's law is obeyed in the range of 0.8–120 µg · mL−1 of amoxicillin. The linear regression equation is A=0.041239+0.22128 C, with 0.9994 of a linear regression correlation coefficient. The detection limit is 2.0 µg · mL−1, and average recovery is over 98.5%. This paper further optimizes the determination of amoxcillin compared to the previous methods, and the kinetic property and reaction mechanism are studied intensively. This proposed method has been successfully applied to the determination of amoxicillin in tablets and capsules. The results obtained by this method agreed well with those by the official method high pressure liquid chromatography (HPLC).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.