65
Views
19
CrossRef citations to date
0
Altmetric
Electrochemistry

Application of a Deconvolutive Procedure to Analyze Several Chlorophenol Species in Natural Waters by Square‐Wave Voltammetry on the Boron‐Doped Diamond Electrode

, &
Pages 1955-1965 | Received 01 Dec 2005, Accepted 15 Feb 2006, Published online: 08 Jun 2007
 

Abstract

The anodic voltammetric behavior of 4‐chlorophenol (4‐CP) on a boron‐doped diamond electrode (BDD) in aqueous solution was studied by square‐wave voltammetry. After optimization of the experimental conditions, 4‐CP was determined in a Britton‐Robinson buffer solution with pH 6.0, prepared with pure water. Moreover, mixtures of some different chlorophenols were also investigated and an analytical method was developed for the simultaneous determination of these compounds in natural waters. The oxidation of 4‐CP on BDD was used for analytical purposes and quantification limits as low as 9.2 µg L−1 were obtained. This result illustrates the advantage of using oxidation process currents on BDD electrodes as the analytical signal, even in contaminated matrices. In order to compare the results found here with the conventional methodology to determine chlorophenols, HPLC‐UV‐vis measurements were also performed and were in good agreement with the analytical values obtained by SWV.

Acknowledgments

The authors thank FAPESP and CNPq, Brazil, for scholarships and financial support to this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.