184
Views
9
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Determination of Rare Earth Elements in Garnet Minerals, Geological Materials by Inductively Coupled Plasma–Atomic Emission Spectral and Mass Spectral Analysis

, &
Pages 2297-2306 | Received 19 Jan 2006, Accepted 20 Mar 2006, Published online: 02 Feb 2007
 

Abstract

The performance of inductively coupled plasma–atomic emission spectrometry (ICP‐AES) for the determination of 14 lanthanides and Yttrium was evaluated by comparison with inductively coupled plasma–mass spectral (ICP‐MS) analysis. The geochemical reference samples (GRS), DNC‐1(diabase), AGV‐1(andesite), Sy‐2(syenite), MRG‐1(gabbro), AN‐G(anorthosite), AC‐E(granite), and MAG‐1(marine mud) were chosen as test materials and analyzed for checking the precision and reproducibility of the methods. The mineral garnet is separated from the black sands of the southwest coast of India, and the combined cation exchange–ICP method of AES analysis and MS analysis were carried out for the determination of rare earth elements. Both techniques are within the requirements needed for garnet minerals. The determination of rare‐earth elements in these minerals, which contain other elements as major contribution and trace distribution of rare‐earth elements, shows that ICP applied under the proper working condition lives up to the expectations. Major element analysis gives the formula of garnet of Manavalakurichi (MK) as (FeCaMg)2.79Al2.07Si3.05O12 approximated to Fe3Al2Si3O12, hence of almandine-type garnet. The enrichment of heavy lanthanides compared to the light lanthanides indicates that these lanthanides occupy the coordinaton site of Fe2+ by replacement. Both techniques are excellent in determining the very low concentration of lanthanides in geological materials, specifically garnet.

Acknowledgments

This work was supported by DST, project titled “Evaluation of beach placers of South‐West coast of India in terms of their geochemical significance.”

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.