150
Views
7
CrossRef citations to date
0
Altmetric
FLUORESCENCE

Interface Study on Zinc Oxide Quantum Dots Using Fluorometric and Regression Analysis in View of Optical Sensing

&
Pages 1278-1288 | Received 22 Nov 2012, Accepted 12 Dec 2012, Published online: 30 Apr 2013
 

Abstract

A study has been performed to investigate the interface property of zinc oxide quantum dots (ZnO-Qdots) for optical sensing ability. Bare and L-cysteine capped ZnO-Qdots were prepared using simple sol-gel hydrolysis method at ambient conditions and the surface property was evaluated using a fluorometric technique. Data were interpreted and modeled using regression analysis, taking into account the effect of temperature and quencher concentration. The capping of L-cysteine caused the fluorescent yield to decrease up to 16-fold as compared to the bare ZnO-Qdots. Upon addition of an external quencher, emission of both bare and capped samples was quenched accordingly and dependent upon the concentration of the quencher. Regression analysis has confirmed with a significant low p-value (<0.05) that bare ZnO-Qdots obtained a dynamic quenching mechanism in the presence of copper (II) ion. Conversely, the capped ZnO-Qdots had a static quenching mechanism. Based on the interface mechanism understanding, it was found that capping effort reduced the sensing sensitivity while the bare one portrayed good sensing potential with a detection limit down to 41.30 ± 0.05 nM. A multi-variable model was constructed for the bare ZnO-Qdots and successfully predicted the concentration of copper (II) ion accurately even at different temperature conditions.

Acknowledgments

This work was supported by Seed Grant 2-5243 by Swinburne University of Technology Sarawak Campus. The authors would also like to thank all supportive staff and technicians that have contributed to this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.