162
Views
5
CrossRef citations to date
0
Altmetric
BIOSENSORS

Functional Magnetic Nanoparticles for Clinical Application: Electrochemical Immunoassay of Hepatitis B Surface Antigen and α-Fetoprotein

, , &
Pages 592-605 | Received 07 Aug 2013, Accepted 17 Sep 2013, Published online: 03 Mar 2014
 

Abstract

This work reports an efficient method to quantify the Hepatitis B surface antigen and α-fetoprotein in human serum using a functional magnetic nanoparticle-assisted sandwich-type electrochemical immunoassay. The Fe 3 O 4 magnetic nanoparticles were first modified with carboxyl functional groups to permit stable bioconjugation to the amine groups of most biological targets. The primary antibodies were then covalently stained on the surface of the functional magnetic nanoparticles, followed by the analyte and secondary antibodies, resulting in a sandwich-type (antibody-antigen-antibody/enzyme) immune complex. The secondary antibodies were labeled with horseradish peroxidase for the catalytic oxidation of 2-aminophenol to yield electrochemically reducible molecules. The separation using an external magnetic field guaranteed fast and reliable purification and enrichment of analytes. Quantitative analysis was performed upon representative clinical targets: Hepatitis B surface antigen and α-fetoprotein in human serum. The detection limits were 0.06 ng/mL for the former and 0.5 ng/mL for the latter, which were about 10 times lower than values obtained by conventional enzyme-linked immunosorbent assays. The reported method may be adopted as a general strategy for the sensitive and selective determination of additional proteins and biological molecules.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lanl.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.