372
Views
9
CrossRef citations to date
0
Altmetric
Fluorescence

Graphene Oxide-Based Homogeneous Fluorescence Sensor for Multiplex Determination of Various Targets by a Multifunctional Aptamer

, , , , , & show all
Pages 1892-1906 | Received 12 Oct 2014, Accepted 02 Jan 2015, Published online: 26 May 2015
 

Abstract

A sensitive and selective fluorescent aptasensor for the determination of metal ions, small molecules, sequence-specific DNA, and proteins was fabricated. The analytical approach was based on target-induced conformational changes of the probe and the self-assembled probe-graphene oxide architecture. The probe employed fluorescence “on/off” switching in a single step in solution. This approach was simple to prepare and had little background with good sensitivity and rapid response. In the absence of targets, the probe adsorbed on the surface of graphene oxide through π–π stacking and quenched fluorescence of the probe. Upon the addition of analyte, the random coil of the probe bonded to the targets, reducing the interaction between the probe and graphene oxide, which disrupted the energy transfer from the probe to graphene oxide and therefore increased the fluorescence. This approach was employed for the determination of Ag+, Hg2+, cysteine, sequence-specific DNA, and thrombin. The results demonstrated that the probe-graphene oxide architecture was an excellent and versatile platform for the determination of multiple analytes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.