173
Views
14
CrossRef citations to date
0
Altmetric
Separations

Facile Fabrication of a Free-Standing Magnesium Oxide-Graphene Oxide Functionalized Membrane: A Robust and Efficient Material for the Removal of Pollutants from Aqueous Matrices

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2067-2084 | Received 26 Jul 2023, Accepted 14 Nov 2023, Published online: 24 Nov 2023
 

Abstract

Environmental pollution significantly challenges human health, ecosystems, and the planet’s sustainability. Widespread air, water, and soil contamination from various pollutants requires effective and sustainable solutions to reduce or eliminate pollution and its impacts. In this work, we designed novel magnesium oxide and graphene oxide (MgO@GO) composite free-standing membranes for nanofiltration. The membranes were characterized with the help of Fourier-transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Further, free-standing MgO@GO composite membranes with different thicknesses were used to measure the water permeance. 410 nm-thick membranes showed high water permeance up to 480 ± 5 Lm−2 h−1 bar−1. Further, the rejection efficiency of the membrane was measured against NaCl, CaCl2, Pb(NO3)2, CdCl2, and amoxicillin. The MgO@GO membrane (410 ± 10 nm) showed 100% rejection for amoxicillin and 99% for Pb(NO3)2, respectively. Additionally, the membranes were stable under acidic and neutral conditions for approximately ∼80 days and may used on an industrial scale to ensure water is clean and free from harmful substances.

Acknowledgment

The authors gratefully acknowledge the National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan for providing all the necessary facilities to complete this work. Ayaz Ali Memon also acknowledges the grant from Higher Education Commission Islamabad Pakistan (Project No. 20-14470/NRPU/R&D/HEC/2021) for financial support of this work. The authors also extend their sincere appreciation to the Researchers Supporting Project Number (RSP2023R301), King Saud University, Riyadh, Saudi Arabia.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.