59
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Ion-Selective Microchemical Sensors with Reduced Preconditioning Time. Membrane Biostability Studies and Applications in Blood Analysis

, , , , , , & show all
Pages 3039-3063 | Received 15 Jun 1994, Published online: 22 Aug 2006
 

Abstract

Progress on solution of two general problems regarding the use of in vivo planar microchemical sensors is reported. These are issues of short term and long term response stability. Reduction of preconditioning time (hydration period), i.e., the time needed by the planar microchemical sensors based on Kapton® substrate to achieve the optimal analytical performances, has been achieved. By storing the electrodes in containers with humid atmospheres (100% humidity) their short time responses, e.g. measured potential, when placed in samples to be analyzed, are practically constant after one minute of immersion. The electrode sensitivity, potential reproducibility and membrane resistance of both pH and K+ sensors were evaluated and compared before and after placing them in whole blood samples for specified periods of time. Blood serum samples were successfully assayed and the results compared with those obtained with a pH glass electrode and a blood gas analyzer, respectively. The long term stability of the membranes for in vivo use was investigated by determination of cell adhesion and membrane biostability (at 14 days of subcutaneous implantation in rats) using scanning electron microscopy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.