19
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Differential Pulse Polarographic Determination of Gallium and Niobium in Samples After Preconcentration of Their Quinolin-8-Olate Complexes on Microcrystalline Naphthalene

, , &
Pages 841-857 | Received 03 Nov 1997, Accepted 28 Dec 1997, Published online: 22 Aug 2006
 

Abstract

Gallium and niobium react with quinolin-8-ol to form water insoluble complexes which are quantitatively adsorbed on microcrystalline naphthalene from the large volume of their aqueous solutions in the pH range of 3.5 - 8.2 and 6.2 - 9.4, respectively. After filtration, the metal complexes were desorbed with 10 ml of HCl (1M for Ga and 11 M for Nb) and determined by using a differential pulse polarograph (DPP). The dissolved oxygen is removed by adding a few milliliters of 4% NaBH4 solution in the case of gallium. The detection limits are 0.04 ppm for gallium and 0.05 ppm for niobium at the minimum instrumental settings (signal to noise ratio = 2). The linearities are maintained in the concentration range 0.1 - 5.0 ppm for gallium and 0.4 - 6.0 ppm for niobium with correlation factors of 0.9997 and 0.9996 and relative standard deviations of 0.81 and 0.95%, respectively.

Characterization of the electroactive process included an examination of the degree of reversibility. Various parameters such as the effect of pH volume of aqueous phase, reagent and naphthalene concentrations and the interference of a large number of anions and cations on the estimation of these elements were studied in detail. The method is found to be highly selective, fairly sensitive, rapid, simple and economical. It has been applied for the trace determination of gallium and niobium in various standard alloys and may be applied safely for the analyses of complex materials like environmental samples and ores.

∗On study leave from Zakir Husain College, University of Delhi, Delhi - 110007.

Notes

∗On study leave from Zakir Husain College, University of Delhi, Delhi - 110007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.