70
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Electrocatalytical Oxidation and Determination of Dopamine at Redox Polymer/Nafion Modified Electrodes

Pages 2951-2964 | Published online: 27 Feb 2008
 

ABSTRACT

The modified glassy carbon electrodes prepared by simultaneously covering with [Os(bpy)2(PVP)10Cl]+ redox polymer and Nafion film exhibited excellent electrocatalytic activity for the oxidation of dopamine (DA). Dual linear regions between 1.0x10−8-1.8x10−5 M and 1.8x10−5-4.0x10−4 M with correlation coefficients of 0.998 and 0.995, respectively, were obtained for log-log plots of catalytic current versus DA concentration. The detection limit for DA determination was ca. 5 nM with 3σ. The dual-film modified electrodes eliminated efficiently the interference from AA presence in a 1000-fold concentration ratio and showed excellent reproducibility for the determination of DA. The modified electrodes have been used to determine DA concentration with both cyclic voltammetric and chronoamperometric techniques. Electrocatalytic kinetics have been studied using a rotating disk electrode. Both the addition of Nafion film and an increase in DA concentration resulted in a decrease in the electrocatalytic rate constant. An apparent Michaelis-Menten constant of 1.3 mM and maximum catalytic current of 88μA were evaluated from the chronoamperometric measurements.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.