165
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Searching for Asses, Finding a Kingdom: The Story of the Invention of the Scanning Tunnelling Microscope (STM)

&
Pages 101-125 | Received 25 Oct 2006, Published online: 09 Aug 2010
 

Summary

We offer a novel historical-philosophical framework for discussing experimental practice which we call ‘Generating Experimental Knowledge’. It combines three different perspectives: experimental systems, concept formation, and the pivotal role of error. We then present an historical account of the invention of the Scanning Tunnelling Microscope (STM), or Raster-Tunnelmikroskop, and interpret it within the proposed framework. We show that at the outset of the STM project, Binnig and Rohrer—the inventors of the machine—filed two patent disclosures; the first is dated 22 December 1978 (Switzerland), and the second, two years later, 12 September 1980 (US). By studying closely these patent disclosures, the attempts to realize them, and the subsequent development of the machine, we present, within the framework of generating experimental knowledge, a new account of the invention of the STM. While the realization of the STM was still a long way off, the patent disclosures served as blueprints, marking the changes that had to be introduced on the way from the initial idea to its realization.

Acknowledgements

This research has been conducted within the framework of the project, Generating Experimental Knowledge: Experimental Systems, Concept Formation and the Pivotal Role of Error—a cooperation between the Philosophy Department, the University of Haifa (Giora Hon), the Max Planck Institute for the History of Science, Berlin (Hans-Jörg Rheinberger) and the Department of History, University of Wuppertal (Friedrich Steinle). The project is funded by the German–Israeli Foundation (GIF), grant no. G-767–217.4/2002. We are grateful to Thomas Dohmen, Igal Dotan, Uljana Feest, Hans-Jörg Rheinberger, Jutta Schickore, Friedrich Steinle, Lambert Williams, and Gabor Zemplen for their comments on earlier versions of this paper presented at the University of Haifa, and the Max Planck Institute for the History of Science, Berlin. We are indebted to Susanne Johner, Assistant, Science & Technology Department, and to Nicole Hertfurth, Media Relations, of the IBM Research GmbH, Zurich Research Laboratory, Rüschlikon, Switzerland, for their kindness and generous assistance. We thank Ron Alter, the philosophy librarian to the University of Haifa, for helping us locate the Swiss Patent disclosure, Eden Orion for the preparation of the figures, and two anonymous referees of this journal for insightful and most helpful comments.

Notes

1H.C. Von Baeyer, Taming the Atom. The Emergence of the Visible Microworld (New York, 2000); A. Hessenbruch, ‘Interview: Gerd Binnig and Heinrich Rohrer’, in Binnig's office at IBM Zurich, Rüschlikon, 13:30–15:30, 4 May 2001 (3) in A. Hessenbruch, ‘A short history of Scanning Probe Microscopy’, Dibner's ‘History of Recent Science and Technology’ at: http://hrst.mit.edu/hrs/materials/public/STM, 2001; J. Schummer and A. Nordmann, eds., Discovering the Nanoscale (Amsterdam, 2004); Arne Hessenbruch, ‘Nanotechnology and the Negotiation of Novelty’, in Schummer and Nordmann, 135–44; D. Baird and A. Shew, ‘Probing the History of Scanning Tunneling Microscopy’, in Schummer and Nordmann, 145–56; J. Hennig, ‘Changing in the Design of Scanning Tunneling Microscopic Images from 1980 to 1990’, Techné 8 (2004), 1–20; C.M. Mody, Crafting the Tools of Knowledge the Invention, Spread, and Commercialization of Probe Microscopy, 1960–2000 (Dissertation, Cornell University, 2004); C. Mody, ‘How Probe Microscopists became Nanotechnologists’, in Schummer and Nordmann, 119–33; C. Robinson, ‘Images in Nanoscience Technology’, in Schummer and Nordmann, 165–69; J.C. Pitt, ‘The Epistemology of the Very Small’, in Schummer and Nordmann, 157–63; J.Z. Buchwald, ‘How the Ether Spawned the Microworld’, in L. Daston, ed., Biographies of Scientific Objects (Chicago, 2000), 203–25.

2Patentschrift A5 #643 397, Gesuchsnummer: 8486/79; Raster-Tunnelmikroskop, Erfinder: G. Binnig, Richterswil, H. Rohrer, Richterswil, Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978. US patent #4,343,993 for the Scanning Tunneling Microscope invented by G. Binnig and H. Rohrer, registered on 10 August 1982 (filed 12 September 1980). Since both patents, the Swiss and the American, are almost identical, all citations are taken from the American (English) version of the patent disclosure.

5G. Binnig and H. Rohrer, ‘Scanning Tunneling Microscopy—From Birth to Adolescence’, Nobel lecture, Reviews of Modern Physics 59 (1987), 615–25 (615). The Nobel lecture was delivered on 8 December 1986, 616.

3G. Binnig and H. Rohrer, ‘Scanning Tunneling Microscopy’, IBM Journal of Research and Development 30 (1986), 355–69 (358).

4G. Binnig and H. Rohrer, ‘Scanning Tunneling Microscopy—From Birth to Adolescence’, Nobel lecture, Reviews of Modern Physics 59 (1987), 615–25 (615). The Nobel lecture was delivered on 8 December 1986.

6B.M. Schawrzschild, ‘Microscopy by Vacuum Tunneling’, Physics Today 35 (April 1982), 21–22 (22).

7B.M. Schawrzschild, ‘Microscopy by Vacuum Tunneling’, Physics Today 35 (April 1982), 21.

8H-J. Rheinberger, Towards a History of Epistemic Things: Synthesizing Proteins in the Test Tube (Stanford, 1997). M. Hagner, and H.-J. Rheinberger, ‘Experimental Systems, Objects of Investigation, and Spaces of Representation’, in M. Heidelberger and F. Steinle, eds., Experimental Essays—Versuche zum Experiment (Baden-Baden, 1998), 355–73.

9F. Steinle, ‘Entering New Fields: Exploratory Uses of Experimentation’, Philosophy of Science 64 (Supplement 1997), S65–S74; F. Steinle, (1998), ‘Exploratives vs. theoriebestimmtes Experimentieren: Ampères erste Arbeiten zum Elektromagnetismus’, ibid, Heidelberger and Steinle (1998), 272–97.

10G. Hon, ‘Towards a typology of experimental errors: An epistemological view’, Studies in History and Philosophy of Science 20 (1989), 469–504; G. Hon, ‘“If This Be Error”: Probing Experiment With Error’, note 8, Heidelberger and Steinle (1998), 227–48.

11Note 4, 615.

12Note 4, 615.

13A. Hessenbruch, ‘Interview: Gerd Binnig and Heinrich Rohrer’, note 1.

14Note 2, 2.

15Note 2, 12.

16Note 2, 1.

17G. Binnig and C. Gerber, ‘Piezo Drive with Coarse and Fine Adjustment’, IBM Technical Disclosure Bulletin 22 (1979), 2897; note 2, sheet 2 of 3.

18Note 2, 4.

19Note 2, 6.

20Private communication, H. Rohrer, 2 April 2006; note 2, 5; Binnig and Rohrer called their machine at the end of 1978, ‘Raster-Tunnelmikroskop’.

21Note 4, 616–17.

22Note 6, 21.

23See note 17.

24Note 2, 2.

25G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, ‘Tunneling Through a Controllable Vacuum Gap’, Applied Physics Letters 40 (1982), 178–80 (178) (received 30 September 1981).

26Note 4, 618.

27G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, ‘Vacuum Tunneling’, Physica 109 and 110B (1982), 2075–2077 (originally a talk, 19–25 August 1981) (2075). For the second paper, see note 25.

28A. Hessenbruch, ‘Interview: Gerd Binnig and Heinrich Rohrer’, note 1, 4.

30Note 4, 615.

29Note 4, 619.

31For the LT16 Conference lecture, see note 27; it was published in 1982.

32G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, ‘Surface Studies by Scanning Tunneling Microscopy’, Physical Review Letters 49 (1982), 57–61 (58–59) (received 30 April 1982).

33Note 2, 2.

34Note 25, 178.

35Note 32, 59.

36Note 4, 619.

37Note 32, 57–60.

38G. Binnig and H. Rohrer, ‘Scanning Tunneling Microscopy’, Surface Science 126 (1983), 236–44 (received 30 September 1982). G. Binnig and H. Rohrer, ‘Scanning Tunneling Microscopy’, Helvetica Physica Acta 55 (1982), 726–35 (received 30 December 1982).

39Note 3, 358.

40A. Hessenbruch, ‘Interview: Gerd Binnig and Heinrich Rohrer’, note 1, 2.

41A. Hessenbruch, ‘Interview: Gerd Binnig and Heinrich Rohrer’, note 1, 2, 3.

42A. Hessenbruch, ‘Interview: Gerd Binnig and Heinrich Rohrer’, note 1, 2, 3.

43A. Hessenbruch, ‘Interview: Gerd Binnig and Heinrich Rohrer’, note 1, 2, 3.

44A. Hessenbruch, ‘Interview: Gerd Binnig and Heinrich Rohrer’, note 1, 2, 3.

45Note 25, 179.

46Note 27, 2077.

48Note 2, 1.

49Note 2. For the original German, see note 2, 2–3 (patent 1978): ‘Bei einer Abbildung der Oberfläche mit gleich-energetischer Strahlung spricht man von Mikroskopie. Im Falle einer Untersuchung mit Strahlung unterschiedlicher Spannung oder Frequenz, d.h. mit variierender Energie, spricht man im allgemeinen von Spektroskopie. Dennoch nennt man die Geräte meist Mikroskope, auch wenn sie zusätzlich spektroskopische Untersuchungen ermöglichen’.

47Note 2, 4.

50Note 2. For the original German, see note 2, 2–3 (patent 1978): ‘Bei einer Abbildung der Oberfläche mit gleich-energetischer Strahlung spricht man von Mikroskopie. Im Falle einer Untersuchung mit Strahlung unterschiedlicher Spannung oder Frequenz, d.h. mit variierender Energie, spricht man im allgemeinen von Spektroskopie. Dennoch nennt man die Geräte meist Mikroskope, auch wenn sie zusätzlich spektroskopische Untersuchungen ermöglichen’, 9.

51Note 2. For the original German, see note 2, 2–3 (patent 1978): ‘Bei einer Abbildung der Oberfläche mit gleich-energetischer Strahlung spricht man von Mikroskopie. Im Falle einer Untersuchung mit Strahlung unterschiedlicher Spannung oder Frequenz, d.h. mit variierender Energie, spricht man im allgemeinen von Spektroskopie. Dennoch nennt man die Geräte meist Mikroskope, auch wenn sie zusätzlich spektroskopische Untersuchungen ermöglichen’, 9.

52Note 25, 178.

53G. Binnig, H. Rohrer, C. Gerber, and E. Stoll, ‘Real-Space Observation of the Reconstruction of Au(100)’, Surface Science 144 (1984), 321–35 (325).

54G. Binnig, H. Rohrer, C. Gerber, and E. Stoll, ‘Real-Space Observation of the Reconstruction of Au(100)’, Surface Science 144 (1984), 321–35 (325).

55Note 38, 734.

56Note 38, 734.

57Note 38, 734.

58Note 38, 734.

59Note 4, 623.

60Note 2, 12.

61C.F. Quate, ‘Vacuum Tunneling: A New Technique for Microscopy’, Physics Today (August 1986), 26–33.

62H. Rohrer, private communication to the authors, 20 September 2006. Low Energy Electron Diffraction (LEED) is a technique used to characterize the structures of surfaces (see also , caption).

63G. Binnig, H. Fuchs, C. Gerber, O. Marti and H. Rohrer, ‘Scanning Tunneling Microscope combined with a scanning electron microscope’, Review of Scientific Instruments 57 (1986), 221–24 (221) (received 17 July 1985).

64Note 62.

65Gerd Binnig and Heinrich Rohrer, ‘The Scanning Tunneling Microscope’, Scientific American 253 (1985), 40–46 (on 40).

66A.M. Baro, G. Binnig, H. Rohrer, E. Stoll, A. Baratoff, and F. Salvan, ‘Real-Space Observation of the 2×1 Structure of Chemisorbed Oxygen on Ni(110) by Scanning Tunneling Microscopy’, Physical Review Letters 52 (1984), 1304–1307 (1305).

67N. Garcia, ed., ‘STM'86 Proceedings of the First International Conference on Scanning Tunneling Microscopy’ (14–18 July 1986, Santiago de Compostela, Spain), Surface Science 181 (1987).

68Note 4, 617.

69Note 62.

70Note 63, 221.

71Note 32.

72Note 32, 58–59; cf. note 35.

73Note 4, 618.

74Note 20.

75‘The Creative Process’, an interview with Gerd Binnig, Deutschland Forum on Politics, Culture and Business, No. 5 (October/November 2004), 46–47 (47).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.