88
Views
108
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Diet on Mercury Metabolism and Excretion in Mice Given Methylmercury: Role of Gut Flora

, &
Pages 401-408 | Published online: 10 Dec 2012
 

ABSTRACT

Mice fed either (1) a pelleted rodent diet, (2) evaporated milk, or (3) a synthetic diet (high protein, low fat) exhibited different rates of whole body mercury elimination and fecal mercury excretion after exposure (per os) to methylmercuric chloride. The percentage of the total mercury body burden present as mercuric mercury was highest (35.3%) in mice fed the synthetic diet (which had the highest rate of mercury elimination) and lowest (6.6%) in the animals having the lowest mercury elimination rate (milk-fed mice). Mice fed the synthetic diet had lower mercury concentrations and had a higher proportion of mercuric mercury in their tissues than the mice from the other dietary groups. Treatment of the mice with antibiotics throughout the experimental period to suppress the gut flora reduced fecal mercury excretion and the dietary differences in whole body retention of mercury. Tissue mercury concentrations and proportion of organic mercury in feces, cecal contents, liver, and kidneys were increased by antibiotic treatment of mice fed the pelleted or synthetic diets. These results are consistent with the theory that demethylation of methylmercury by intestinal microflora is a major factor determining the excretion rate of mercury.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.