352
Views
20
CrossRef citations to date
0
Altmetric
Articles

Wood properties of Eucalyptus globulus at three sites in Western Australia: effects of fertiliser and plantation stocking

, , , , , & show all
 

Summary

Wood properties of 10-year-old trees in Eucalyptus globulus plantations at three sites in Western Australia were examined. Silvicultural treatments applied at age two years were stocking (unthinned, 1250 stems ha–1; thinned to 600 stems ha–1 or 300 stems ha–1) and nitrogen fertiliser application (0 or 250 kg ha–1 elemental nitrogen) in factorial combination. The three sites differed markedly in their annual rainfall (620–1100 mm), open-pan evaporation and soil water-holding capacity. Wood cores were collected at breast height from a total of 263 trees (~15 trees for each site-by-treatment combination), and radial samples prepared for analysis by SilviScan to produce radial profiles of air-dry density and microfibril angle (MFA) and modulus of elasticity (MOE), and by radial near infrared (NIR) surface scanning to produce radial profiles of NIR-predicted Kraft pulp yield (KPY) and cellulose content (CC). Sampling interval was 0.025 mm for density and 5 mm for the other properties. For wood property mean values (i.e. wood property averages of each pith-to-cambium sample), sites differed significantly only in air-dry density. The Boyup Brook site, which had low annual rainfall, the lowest climate wetness index and soil water-storage capacity and the slowest diameter growth, had the highest mean wood density (648 kg m–3), while Scott River, with the highest rainfall, had mean density that was 10% lower. The Wellstead site (low rainfall but highest soil water-storage capacity) was intermediate for density. The only other significant differences for mean wood properties were caused by fertiliser addition, which reduced NIR-predicted KPY from 54.6% (without fertiliser) to 54.1% and predicted CC from 43.7% to 43.1%. Clear radial trends were evident for all wood properties. Density, MOE, KPY and CC all increased from pith to the cambium, while MFA declined. From the innermost (pith) 10% to the outermost (cambial) 10% of the radius, density increased on average by 21%, MOE by 103%, KPY by 9% and cellulose by 11%, while MFA declined by 47%. NIR calibrations developed using the SilviScan and NIR spectral data explained 71% of variance in MOE for an independent set of radial wood samples of E. globulus from Victoria, but less than 50% of variance for density and MFA. Implications for paper pulp and veneer manufacture are briefly considered.

Acknowledgements

This study was carried out with support from CRC Forestry Ltd (Hobart, Tasmania), the National Centre for Future Forest Industries (University of Tasmania) and Forest Quality Pty Ltd (Franklin, Tasmania). We acknowledge the role of John McGrath (FPCWA) in establishing the trials used in this study and thank Maximilian Wentzel-Vietheer for access to the Gippsland E. globulus data set.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.