1,133
Views
22
CrossRef citations to date
0
Altmetric
Research Article

The effectiveness of fuel reduction burning for wildfire mitigation in sclerophyll forests

ORCID Icon, , & ORCID Icon
Pages 255-264 | Received 30 May 2020, Accepted 07 Oct 2020, Published online: 09 Nov 2020
 

ABSTRACT

The wildfires in south-eastern Australia in the 2019–20 fire season were some of the worst in recent memory. The effectiveness of fuel-reduction burning as a risk mitigation strategy is, once again, being scrutinised. Some argue that more fuel-reduction burning is needed, while others suggest that it is of limited use in such extreme fires. In this study, we tested the effectiveness of fuel-reduction burning at a landscape scale in terms of its ability to reduce the severity of subsequent wildfire. To achieve this, we selected all the recent (2015–2019) fuel-reduction burns undertaken in New South Wales and Victoria that intersected with the extent of the 2019–20 wildfires and evaluated whether the fire severity was significantly different in the recently treated areas to that of similar untreated areas in the vicinity. To determine fire severity, Sentinel 2 satellite imagery and the change in normalised burn ratio (a common metric used for rapid and broadscale fire severity mapping) was used. Our results showed that 48% of the 307 recent fuel-reduction burns resulted in statistically significant decreased fire severity. Our results also indicated that more recent fuel-reduction burns had a greater impact, with 66% of burns undertaken in 2019 significantly reducing severity, compared with 42% from 2015. We also analysed each fuel-reduction burn in the context of a range of metrics, including location, elevation, slope, aspect and forest heterogeneity, to assess whether these factors influenced the likelihood that a burn would be effective. Location and, to a lesser degree, forest heterogeneity were found to be significant factors. Our results support the view that recent fuel-reduction burns reduce fire severity. It is unclear, however, whether the differences would be operationally significant under extreme conditions, when wildfires are driven largely by weather, irrespective of fuel loads.

This article is part of the following collections:
Fire and Australian Forestry – key papers published since 1975

Acknowledgements

We thank Forestry Corporation NSW for access to their fire-history records. All other data were accessed from publicly available datasets. SH is funded through the NSW Forest Monitoring and Improvement Program, managed by the NSW National Resources Commission.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.